



.

THE

RAILROAD SPIRAL.

THE THEORY OF THE

COMPOUND TRANSITION CURVE

REDUCED TO

PRACTICAL FORMULÆ AND RULES FOR APPLICATION IN FIELD WORK;

WITH

COMPLETE TABLES OF DEFLECTIONS AND ORDINATES FOR FIVE HUNDRED SPIRALS.

BY

WILLIAM H. SEARLES, C.E.,

MEMBER AMERICAN SOCIETY OF CIVIL ENGINEERS, AUTHOR "FIELD ENGINEERING."

NEW YORK: JOHN WILEY & SONS. 1882. COPYRIGHT, 1882, BY JOHN WILEY & SONS. 2-14-3-0

PENSIELE AND RULES FOR

RAILROADUSPIRAL.

OURN'SITION CORVE

PRESS CF J. J. LITTLE & CO., NOS. 10 TO 20 ASTOR PLACE, NEW YORK.

PREFACE.

initian the breathers in

lated once for all, leaving only those values to be forme

THE object of this work is to reduce the well-known theory of the cubic parabola or multiform compound curve, used as a transition curve, to a practical and convenient form for ordinary field work.

The applicability of this curve to the purpose intended has been fully demonstrated in theory and practice by others, but the method of locating the curve on the ground has been left too much in the mazes of algebra, or else has been described as a system of offsets, or *fudging*. Where a system of deflection angles has been given, the range of spirals furnished has been much too limited for general practice. In consequence the great majority of engineers have contented themselves with locating circular curves only, leaving to the trackman the task of adjusting the track, not to the centres given near the tangent points, but to such an approximation to the spiral as he could give "*by eye.*"

The method here described is that of transit and chain, analogous to the method of running circular curves; it is quite as simple in practice, and as accurate in result. No offsets need be measured, and the curve thus staked out is willingly followed by the trackmen because it "looks right," and is right.

The preliminary labor of selecting a proper spiral for a given case, and of calculating the necessary distances to locate it at the proper place on the line, is here explained, and reduced to the simplest method. Many of

in and the second

the quantities required have been worked out and tabulated once for all, leaving only those values to be found which are peculiar to the individual case in hand. A large number of spirals are thus prepared, and their essential parts are given in Table III.

In section 22 is developed the method of applying spirals to existing circular curves, without altering the length of line, or throwing the track off of the road bed, an important item to roads already completed. Table V. contains samples of this kind of work arranged in order, so that, by a simple interpolation, the proper selection can be made in a given case.

The series of spirals given in Table III. are obtained by a simple variation of the chord-length, while the deflections and central angles remain constant. This is the converse of our series of circular curves, in which the chord is constantly 100 feet, while the deflections and central angles take a series of values.

The multiform compound curve has been chosen as the basis of the system, rather than the cubic parabola, because, while there is no practical difference in the two, the former is more in keeping with ordinary field methods, and is far more convenient for the calculation and tabulation of values *in terms of the chord-unit*, or of measurement along the curve. While the several component arcs of the spiral are thus assumed to be circular, yet the chord-points are points of a true spiral, to which the track naturally conforms when laid according to the chord-points given as centres.

The "Railroad Spiral" is in the nature of a sequel to "Field Engineering;" the same system of notation is adopted, and any tables referred to, but not given here, will be found in that work.

WM. H. SEARLES, C. E.

NEW YORK, July 1, 1882.

CONTENTS.

To find that & in terms of diff. To

IT a fait diff. Of in terms of the 1 fait A wo

ų.

A

g

le

e

CHAPTER I.

INTRODUCTION.

ECTION	IAGE
I. Objections to simple circular curves	I
2. Office of the spiral	2

CHAPTER II.

THEORY OF THE SPIRAL.

3.	Description of the spiral	3
4.	Co-ordinates of the spiral	3
5.	Deflection angles from the main tangent	5
	Deflection angles from an auxiliary tangent	6
	The chord-length as a variable	9
	Construction of Table of Co-ordinates	
	Elements of the spiral	
	Selection of a spiral	
		1000

CHAPTER III.

ELEMENTARY PROBLEMS.

TT	To find a long chord SL	12
	To find the tangents SE and EL	
13.	To find a long chord QL	14
	To find the tangents QE' and $E'L$	
	To find the tangent-distance $T_s = SV$	
16.	To find T's approximately	17
17.	To find the radius R' in terms of T_s and spiral	17

CONTENTS.

PAGE

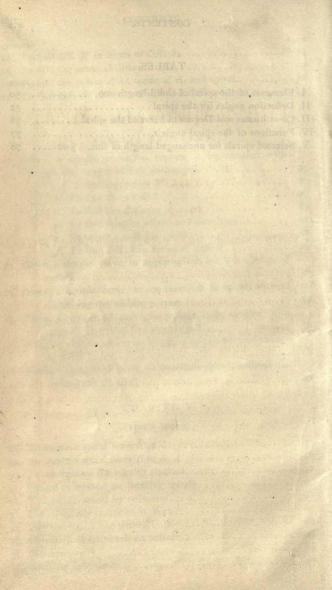
SECTION

18. To find diff. R' in terms of diff. Ts	19
19. To find the external distance Es	20
20. To find the radius R' in terms of E_s and spiral	21
21. To find diff. R' in terms of diff. x for E_s constant	23

CHAPTER IV.

SPECIAL PROBLEMS.

22.	Given, a simple curve, to replace it by another with	
	spirals; length of line unchanged	25
	a. To find the radius R'	26
	b. To find the offset h	26
	c. To find the distance $d = AS$	27
	d. To find lengths of old and new lines	27
	e. To select a suitable spiral	28
	f. To find diff. h in terms of diff. R'	29
23.	Given, a simple curve, to apply spirals without change of	
	radius	32
24.	Given, a simple curve, to compound it for spirals without	
	disturbing the middle portion	34
25.	Given, a compound curve, to replace it by another, with	
	spirals; length of line unchanged	36
26.	Given, a compound curve, to apply spirals without change	
	of radii	40
27.	Given, a compound curve, to introduce spirals without dis-	
	turbing the P. C. C	42


CHAPTER V.

FIELD WORK.

28.	To locate a spiral from S to L	45
29.	To locate a spiral from L to S	46
30.	To interpolate the regular stations	47
31.	Choice of method for locating spirals	47
32.	To locate a spiral by ordinates	48
33.	Use of spirals on location work	48
34.	Description of line with spirals	48
35.	Elevation of outer rail on spirals	49
36.	Monuments	49
37.	Keeping field-notes	49

TABLES.

G. 23		AGE
I.	Elements of the spiral of chord-length 100	50
II.	Deflection angles for the spiral	52
[II.	Co-ordinates and Degree of curve of the spiral	58
IV.	Functions of the spiral angle s	77
v.	Selected spirals for unchanged length of line. § 22	78

THE RAILROAD SPIRAL.

CHAPTER I.

There is a strong of

INTRODUCTION.

I. ON a straight line a railway track should be level transversely; on a curve the outer rail should be raised an amount proportional to the degree of curve. At the tangent point of a circular curve both of these conditions cannot be realized, and some compromise is usually adopted, by which the rail is gradually elevated for some distance on the tangent, so as to gain at the tangent point either the full elevation required for the curve, or else three-quarters or a half of it, as the case may be. The consequence of this, and of the abrupt change of direction at the point of curve, is to give the car a sudden shock and unsteadiness of motion, as it passes from the tangent to the curve.

The railroad spiral obviates these difficulties entirely, since it not only blends insensibly with the tangent on the one side, and with the circle on the other, but also affords sufficient space between the two for the proper elevation of the outer rail. Moreover, since the curvature of the spiral increases regularly from the tangent to the circle, and the elevation of the outer rail does the same, the one is everywhere exactly proportional to the other, as it should be. The use of the spiral allows the track to remain level transversely for the whole length of the tangent, and yet to be fully inclined for the whole length of the circle, since the entire change in inclination takes place on the spiral.

2. The office of the spiral is not to supersede the circular curve, but to afford an easy and gradual transition from tangent to curve, or vice versa, in regard both to alignment and to the elevation of the outer rail. A spiral should not be so short as to cause too abrupt a rise in the outer rail, nor yet so long as to render the rise almost imperceptible, and therefore difficult of actual adjustment. Within these limits a spiral may be of any length suited to the requirements of the curve or the conditions of the locality. To suit every case in practice an extensive list of spirals is required from which to select.

n is research to evaluate an bas kinds with a party

since is not only blends insensibly with the timesic un

CHAPTER II.

THEORY OF THE SPIRAL.

3. THE Railroad Spiral is a compound curve closely resembling the cubic parabola; it is very flat near the tangent, but rapidly gains any desired degree of curvature.

The spiral is constructed upon a series of chords of equal length, and the curve is compounded at the end of each chord. The chords subtend circular arcs, and the degree of curve of the first arc is made the common difference for the degrees of curve of the succeeding arcs. Thus, if the degree of curve of the first arc be 0° 10', that of the second will be 0° 20', of the third, 0° 30', &c.

The spiral is assumed to leave the tangent at the beginning of the first chord, at a tangent point known as the *Point of Spiral*, and designated by the initials *P. S.*, or on the diagrams by the letter S.

4. To determine the co-ordinates of the several chord extremities, let the point S be taken as the origin of co-ordinates, the tangent through S as the axis of Y, and a perpendicular through S as the axis of X. Then x, y, will represent the co-ordinates of any point of compound curvature in the spiral, x being the perpendicular offset from the point to the tangent, and y the distance on the tangent from the origin to that offset.

For the purpose of calculation let us assume 100 feet as the chord-length, and 0° 10' as the degree of curve of

the first arc of a given spiral. Then, since the degree of curve is an angle at the centre of a circle subtended by a chord of 100 feet, the central angle of the first chord is 10', of the second 20', of the third 30', &c., and the angles which the chords make with the tangent are :

For	Ist	ch	ord	1, 1/2	×	10	1					=	5'
66	2d	•	"	10'	+	$\frac{1}{2}$	×	20'				=	20'
"	3d		"	10'	+	20'	+	1/2	×	30'		= .	45'
66	4th		"	10'	+	20'	+	30	+	$\frac{1}{2}$ ×	40	=:	80'
	&c.,					- × 4	&c	.,				8	zc.,

or in general the inclination of any chord to the tangent at S is equal to half the central angle subtended by that chord added to the central angles of all the preceding chords. If now we consider the tangent as a meridian, the *latitude* of a chord will be the product of the chord by the cosine of its inclination, and its *departure* will be the product of the chord by the sine of its inclination to the tangent. A summation of the several latitudes for a series of chords will give us the required values of y, and a summation of the several departures will give us the required values of x. By the aid of a table of sines and cosines, we may therefore readily prepare the following statement :

Chord.	Inclin. to tang.	Dep. = 100 sine.	<i>x</i> .	Lat. = 100 cosine,	у.
I 2 3 4 &c	$0^{\circ} 05' 0^{\circ} 20' 0^{\circ} 45' 1^{\circ} 20'$	0.145 0.582 1.309 2.327	.145 .727 2.036 4.363 &c.	100.000 99.998 99.991 99.979	100.000 199.998 299.989 399.968 &c.

In this manner Table I. has been constructed.

5. To calculate the deflection angles of the Spiral; Inst. at S. If in the diagram, Fig. 1, we draw the long chords S2, S3, S4, &c., 5 we may easily determine the angle *i*, which any long chord makes with the tangent by means of the co-ordinates of the further extremity of the chord, for

$$\tan i = \frac{v}{y}$$
.

Having calculated a series of values of the angle *i*, we may lay out the spiral on the ground by transit deflections from the tangent, the transit being at the point S.

The statement of the calculation is \underline{x} as follows :

1 10, 1.	F	IG,	I.
----------	---	-----	----

Point.	209.995 x 108.1	y	$\tan i = \frac{x}{y} .$	i
I 2 3 4 &c.	.145 .727 2.036 4.363	100.000 199.998 299.989 399.968	.00145 .00364 .00679 .01091	0° 05' 00'' 12' 30'' 23' 20'' 37' 30'' &c.

The values of *i* are more readily found by logarithms however, since

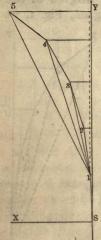
$$\log \tan i = \log x - \log y$$
.

By this formula the first part of Table II. (Inst. at S)

THE RAILROAD SPIRAL.

has been calculated, and these are the only deflections needed for field use when the entire spiral is visible from S.

6. To calculate the deflection angles when the transit is at any other chord-point than S: Suppose the transit at point I, Fig. 2.


In the diagram draw through the point 1 a line parallel to the tangent at S, and also the long chords 1-3, 1-4, &c., and let a_1 represent the angle between any one of these long chords and the parallel. Then, from the right-angled triangles of the diagram we have the following expressions :

For point 2, $\tan a_1 = \frac{x_2 - x_1}{y_2 - y_1} = \frac{.572}{99.998} = .00582.$ " " 3, $\tan a_1 = \frac{x_3 - x_1}{y_3 - y_1} = \frac{1.891}{199.989} = .00945.$ " " 4, $\tan a_1 = \frac{x_4 - x_1}{y_4 - y_1} = \frac{4.218}{299.968} = .01411.$ &c., &c., &c.

But these are better worked by logarithms, and the values of a_1 found directly from the logarithmic tangent.

Let s = the spiral angle = the angle subtended by any number of spiral chords, beginning at S. Then s = the sum of the central angles of the several chords considered; and it therefore equals the angle between

the tangent at S and a tangent at the last point considered. The series of values of the angle s is as follows:

Point.	Angle under single chord.	Angle s.
S	0° 00'	o'
I	10'	10'
2	20' 20'	30'
3	30'	1° 00′
4	40'	1° 40'
&c.,		&c.

Since the values of a_1 found above are deflections at point I from a parallel to the main tangent, it is evident that if we subtract from each the value of s for point 1, or 10', we shall have the deflections, i, from an auxiliary tangent through the point I, which we require for use in the field. The statement is as follows :

Instrum	nent at point 1;	(s = 10').
Point.	Angle a ₁ .	Angle i.
2	20'*	10'
3	32' 30"	22' 30''
4	48' 20''	38' 20''
&c.,	&c.,	&c.

The instrument will read zero on the auxiliary tangent through point I where it stands, and of course the back deflection over the circular arc SI is o5'. Hence we have the complete table of deflections when the instrument is at point 1.

Similarly, if we suppose the instrument to be at point 2, we shall have the statement :

Point.

3 $\tan a_2 = \frac{x_3 - x_2}{y_3 - y_2} = \frac{1.309}{99.991}$.01309+ 4 $\tan a_2 = \frac{x_4 - x_2}{y_4 - y_2} = \frac{3.636}{199.970} = .01522$ &c., &c.,

2

and since for point 2, s = 20', we have :

Point.	Angle a2.	Angle i.
3	0° 35' 45 1.2.30	0° 15'
4	0° 52′ 30″	0° 32′ 30″
	&c.,	&c.

The instrument will read *zero* on the auxiliary tangent through the point 2, the back deflection to the point 1 is half the central angle under the second chord, or 10', and the back deflection to S is the difference between s_2 and the deflection at S for point 2, or 30' - 12' 30'' =17' 30''. We thus may complete the table of deflections for the instrument at point 2.

By a similar process the deflections required at any other chord-point may be deduced. It should be noted, however, in forming the table, that the back deflection

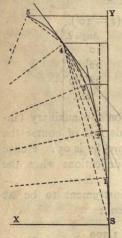


FIG. 3.

triangle formed by the two auxiliary tangents and the chord joining the two points in question. Thus, Fig. 3, when the instrument is at point 4, the back deflection for point 2 is equal to

to any point is equal to the value of s for the place of the instrument, *less* the value of s for the back-point, *less* the forward deflection at the back-point for the place of the instrument. This is obvious from an inspection of the

100' - 30' - 32' 30'' = 37' 30.''

In the manner above described has been calculated the complete table of deflections from auxiliary

tangents at chord-points, for every chord-point of the spiral up to point 20, Table II. It is evident, that by means of this table the entire spiral may be located, the transit being set over any chord-point desired, while the chain is carried around the curve in the usual manner; also, that the curve may be laid out in the reverse direction from any chord-point not above the 20th, since all the back deflections are also given.

7. Variation in the chord-length.

We have thus far assumed the spiral to be constructed upon chords of 100 feet, but it is evident that such a spiral would be entirely too long for practical use; it would be 1700 feet long before reaching a 3° curve.

We must, therefore, assume a shorter chord; but in so doing it will not be necessary to recalculate the angles and deflections, for these remain the same whatever be the chord-length. By shortening the chord-length we merely construct the spiral on a smaller scale. The values of x and y and of the radii of the arcs at corresponding points are proportional to the chord-lengths, and the degrees of curve for corresponding chords are (nearly) inversely proportional to the same.

Thus for any chord-length c we have :

 $x: x_{100}:: c: 100, \text{ or } x = \frac{c}{100} x_{100}.$

 $y: y_{100}:: c: 100, \text{ or } y = \frac{c}{100} y_{100}.$

 $R_{s}: R_{100}:: c: 100, \text{ or } R_{s} = \frac{c}{100} R_{100}.$

Let D_i = the degree of curve due to radius R_i , and D_{100} = the degree of curve due to radius R_{100} ; then,

$$R_s = \frac{100}{2 \sin \frac{1}{2} D_s}$$
, and $R_{100} = \frac{100}{2 \sin \frac{1}{2} D_{100}}$;

whence

$$\sin \frac{1}{2} D_{i} = \frac{100}{6} \sin \frac{1}{2} D_{100},$$

9

in which D_i is the degree of curve upon any chord in a spiral of chord-length c, and D_{100} is the degree of curve upon the corresponding chord in the spiral of chord-length 100.

Accordingly, if we assume a chord-length of 10 feet the values of x and y will be $\frac{10}{100}$ of those calculated for a chord-length of 100 feet, while the degree of curve on each chord will be (nearly) 10 times as great as before.

8. In the construction of Table III., we have assumed the chord to have every length successively from 10 feet to 50 feet, varying by a single foot, and have calculated the corresponding values of x, y and D_{*} . The logarithm of x is also added, and the length of spiral nc.

We are thus furnished with 41 distinct spirals, but since the same spiral may be taken with a different number of chords (not less than three) to suit different cases, the variations which the tables furnish amount to no less than 500 spirals, some one or more of which will be adapted to any case that can arise. The maximum length of spiral has been taken at 400 feet; the shortest spiral given is 3×10 feet = 30 feet. Between these limits may be found spirals of various lengths.

9. The elements of a spiral are :

 $D_{\rm s}$, The degree of curve on the last chord,

- n, The number of chords used,
- c, The chord-length,

 $n \times c$, The length of spiral,

s, The central angle of the spiral,

x, y, The coordinates of the terminal point. Every spiral must terminate, or join the circular curve at a regular chord-point of which the coordinates are known.

10. To select a spiral.

The terminal chord of a spiral must subtend a degree of curve less than that of the circular curve which follows, but the next chord beyond (were the spiral produced) must subtend a degree of curve equal to or differing but a little from that of the circular curve.

Thus, if the circle were a 10 degree curve, the spiral may consist of 5 chords 10 feet long (the degree of curve on the 6th chord being 10° 00' 45''), or of 15 chords 26 feet long (the degree of curve on the 16th chord being 10° 16' 09''), the length of spiral is 50 feet in one case and 390 in the other; between these limits the tables furnish 15 other spirals of intermediate length, all adapted to join a 10 degree curve.

We may therefore introduce one more condition which will fix definitely the proper spiral to employ. If the length of spiral be assumed, we seek in the tables those values of n and c which are consistent with the required value of D, for (n + 1), at the same time that their product, nc, equals as nearly as may be the assumed length of spiral. Thus, if with a 10 degree curve a length of about 130 feet were desirable, we should select either

 $n = 8, c = 15, D_s = 10^{\circ} 00' 45''; nc = 120 \text{ ft.};$ or $n = 9, c = 16, D_s = 10^{\circ} 25' 51''; nc = 144 \text{ ft.}$

 D_s is always taken for (n + 1). When circumstances permit, a chord-length of about 30 feet will give the best proportioned spirals. With a 30 foot chord-length the length of spiral will be about 770 times the superelevation of the outer rail at a velocity of 35 miles per hour. The value of s depends on the number of chords (n)and is independent of the chord-length. If the angle s were selected from the table, this would fix the number n, and we must then choose the chord-length c so as to give the proper value of D_s . Thus, if s were assumed $= 9^\circ$ 10' then n = 10, and c = 18 ft. or 19 ft., giving $D_s = 10^\circ 11' 54''$ or $9^\circ 39' 36''$ to suit a 10 degree curve, and making the length (nc) of the spiral either 170 or 180 ft., according to the spiral selected.

The coordinates (x, y) depend on the values of both n and c. They are used in solving the problems of the spiral, being taken directly from Table III. for this purpose, under the value of c and opposite the value of n.

and a state of the state of the

spinal anote for the paint Is Think and the

CHAPTER III.

ELEMENTARY PROBLEMS.

11. To find the length C of any long chord beginning at the point of spiral S. Fig. 4. Let L be the other extremity of the long chord, x, y the coordinates of L, and *i* the deflection angle YSL at S for the point L.

(1.)

Then

or

The values of x, y and i are found in Tables III. and II.

 $C = \frac{y}{\cos i},$

 $C = \frac{x}{\sin i}$.

Example. In the spiral of chord-
length = 30 ft. what is the length of \underline{x} the long chord from S to the 10th
point ?FIG. 4.

12. To find the lengths of the tangents from the points S and L to their intersection E. Fig. 4. Let x, y be the coordinates of L, and s the spiral angle for the point L. Then s = the deflection angle between the tangents at E, and

$$LE = \frac{x}{\sin s} \qquad SE = y - x \cot s \quad . \quad . \quad (2.)$$

The values of x, y and s are found in Tables III. and IV.

Example. In the spiral of chord-length 40 extending to the 9th point, what are the tangents LE and SE?

From Tal		TE T Mar	$\log x$	1.219075
" "	' IV.,	s 7° 30'	log sin	9.115698
	LE =	126.87		2.103377
			$\log x$	1.219075
	3	s 7° 30'	log cot	0.880571
	1	25.790	· · ·	2.099646
	y 3	359.352	Taia ?	or C
	SE =	233.562		a contrata da

13. To find the length C of any long chord KL. Fig. 4. Let x, y be the coordinates of L, and x', y' the coordinates of K; and let a be the angle LKN which LK makes with the main tangent, and i the deflection angle KLE', and i' the deflection angle LKE'.

Then a = (s - i) at the point L, = (s' + i') at K.

$$KL = \frac{KN}{\cos LKN}$$
 or

most stagent of
$$C = \frac{y - y}{\cos a}$$
 of \cdot i.e. (3.)

Example. In the spiral of chord-length 18 what is the

ELEMENTARY PROBLEMS.

length of the long chord from point 12 to point 20? Here K = 12 and L = 20 = n.

From Table III., y 346.476 UNIVERSITYy' 214.847 CALLED NUMERSITY

From Table II., s' 13°

i' 10°.07' 23"

. . a 23° 07' 23" log cos 9.963629

log

C = 143.13

14. To find the lengths of the tangents from any two points L and K to their intersection at E'. Fig. 4. Let s, s' be the spiral angles for the points L and K respectively. Then (s - s') = the deflection angle between tangents at E'. Having first found C =LK by the last problem we have in the triangle LKE'

 $LE' = \frac{C \sin i'}{\sin (s-s')} \qquad KE' = \frac{C \sin i}{\sin (s-s')} \quad . \quad (4.)$

Example. In the spiral of chord-length 18 what are the tangents for the points 12 and 20?

By last example, C log 2.155723 From Table IV.,

 $(s - s') 35^{\circ} - 13^{\circ} = 22^{\circ} \log \sin 9.573575$

2.582148

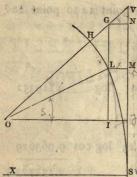
From Table II., 1' 10° 07' 23" log sin 9.244927

1.827075

2.582148

Table II., *i* 11° 52' 37" log sin 9.313468

. . KE' = 78.635


.'. LE' = 67.15

Again :

1.895616

2.119352

2.155723

15. Given: A circular curve and spirals joining two tangents, to find the tangent distance $T_s = VS$. Fig. 5.

Let S be the point of spiral, V the intersection of the tangents, SL the spiral, LH one half the circular curve, and O its centre. In the diagram draw GLI parallel to the tansygent VS, and GN, LM, and OI perpendicular to VS. Join OL and OV.

FIG. 5.

Then

IOL = s; IOV = $\frac{1}{2}$ \triangle ; OL = R'; SM = y; LM = x. Now SV = SM + NV + MN.

But NV = GN. tan $VGN = x \tan \frac{1}{2} \triangle$.

 $MN = GL = OL \frac{\sin LOG}{\sin OGI} = R' \frac{\sin \left(\frac{1}{2}\Delta - s\right)}{\cos \frac{1}{2}\Delta}.$

Hence

 $T_s = y + x \tan \frac{1}{2} \bigtriangleup + R' \frac{\sin \left(\frac{1}{2} \bigtriangleup - s\right)}{\cos \frac{1}{2} \bigtriangleup} \quad . \quad . \quad (5.)$

Example. Let the degree of the circular curve be $D' = 7^{\circ} 20'$, and the angle between tangents, $\Delta = 42^{\circ}$. Let the spiral values be c = 23; n = 9. $\cdot s = 7^{\circ} 30'$. Then by the last equation and the tables,

y v	206.627		SIL
x.		log	0.978743
$\frac{1}{2}\Delta$ 21°	All and the second	log tan	9.584177
eatered up to	36,55	1278	0.562920

ELEMENTARY PROBLEMS.

R'	7° 20' C	log	2.893118
$\frac{1}{2} \triangle - s$	13° 30'	log sin	9.368185
$\frac{1}{2}\Delta$	21 [°]	a. c. log cos	0.029848

195.502

2.297151

$T_{*} = 405.784$

16. When an **approximate value of** T, is only required we may employ a more convenient formula derived from the fact that the line OI produced bisects the spiral SL very nearly, and that the ordinate to the spiral on the line OI, being only about $\frac{1}{5}x$, may be neglected. Thus,

Approx. $T_s = R' \tan \frac{1}{2} \triangle + \frac{1}{2} nc.$ (6.)

Example. Same as above.

$\begin{array}{ccc} R' & 7^{\circ} 20' \mathrm{C} \\ \frac{1}{2} \Delta & 21^{\circ} \end{array}$,111 of		2.893118 m 9.5,84177'
d this is the best spin	300.1.		2.477295
$\frac{1}{2}nc = \frac{1}{2} \times 9 \times 23$	103.5		
$T_s := approx.$	403.6	Y	

Remark. This formula, eq. (6) when R' is taken equal to the radius corresponding to the degree of curve D_i for $(n + \tau)$, gives practically correct results. But as in practice, the value of R' will differ somewhat from the radius of D_i , so the value of T_i derived from this formula will differ more or less from the true value, as in the last example.

 $\sqrt{17}$. Given: the tangent distance $T_{i} = SV$, and the angle \triangle , and the length of spiral SL, to find the radius R' of the circular curve, LH, Fig. 5. The length

of spiral is expressed by nc, hence we have from the last equation.

approx., $R' = (T_s - \frac{1}{2}nc) \cot \frac{1}{2} \triangle \dots$ (7.)

After R' is thus found, the values of n and c are to be determined, such that, while their product equals the given length of spiral as nearly as may be, the value of D, for (n + 1) shall correspond nearly with R'. The values of n and c are quickly found by reference to Table III.

Example. Let $T_s = 406$, $\Delta = 42^\circ$, and nc = 170.

T	$-\frac{1}{2}nc$		321	log 2.5065
	$\frac{1}{2}\Delta$	21 [°]		log cot. 0.4158
	$\dot{R}' =$	say, 6	° 51' curve,	2.9223

By reference to Table III., we find that when n = 8and c = 22, the product *nc* being 176, the value of D_s for (n + 1) is 6° 49' 19", and this is the best spiral to use in this case. But as this spiral is longer than our assumed one, we should decrease the value of R' somewhat, if we would nearly preserve the given value of T_s . For instance, assume R' = radius of 6° 54' curve, and using the same spiral, calculate by eq. (4) the resulting value of T_s , and we shall find $T_s = 408.646$.

As this is an exact value of T_{i} for the values of R', nand c last assumed, and is also a close approximation to the value first given, it will probably answer the purpose completely. If, however, for any reason the precise value of $T_{i} = 406$ is required, we may find the precise radius which will give it by the following problem.

18. Given: a curve, and spiral, and tangent-distance,

19.

 T_{*} to find the difference in R' corresponding to any small difference in the value of T_{*} .

If in eq. (5) we assume a *constant spiral*, and give to R' two values in succession and subtract one resulting value of T_i from the other, we shall find for their difference,

diff.
$$T_s = \frac{\sin\left(\frac{1}{2}\Delta - s\right)}{\cos\left(\frac{1}{2}\Delta\right)}$$
 diff. R' . (8.)

Hence

diff.
$$R' = \frac{\cos \frac{1}{2}\Delta}{\sin (\frac{1}{2}\Delta - s)}$$
 diff. T_s . (9.)

Example. When $R' = \text{rad. } 6^{\circ} 54' \text{ curve}$, n = 8, c = 22, $T_s = 408.646$; what radius will make $T_s = 406$ with the same spiral?

Eq. (9)	diff.	$T_s = 2.640$	6			log	0.42259	90
	15 : 21	$\frac{1}{2}\Delta$, 21°	ent =				9.9701	
, and fo	$\left(\frac{1}{2}\Delta\right)$	$-s), 15^{\circ}$		a. c.	log	sin	0.58700	54
∴ diff.			9.544	'er	1	n	0.97974	46
0.07874	$R' 6^{\circ} 5$	i4' 8	30.876					

... Required radius = 821.332, or 6° 58' 49" curve.

Remark. Care must be taken to observe whether in thus changing the value of R', the value of D', the degree of curve, is so far changed as to require a different spiral according to the rule for the selection of spiral, § 10. Should this be the case (which is not very likely), we may adopt the new spiral, and proceed with a new calculation as before.

19. Given : a circular curve with spirals joining two tangents, to find the external distance $E_i = VH_i$, Fig. 5.

Let SL be the spiral, LH one-half the circular curve, and O its centre.

Then VH = VG + GO - OH.

 $VG = \frac{GN}{\cos VGN} = \frac{x}{\cos \frac{1}{2}\Delta}$, and in the triangle But

GOL, GO = LO $\frac{\sin \text{ OLI}}{\sin \text{ LGO}} = R' \frac{\cos s}{\cos \frac{1}{2}\Delta};$

$$E_{s} = \frac{x}{\cos \frac{1}{2}\Delta} + R' \frac{\cos s}{\cos \frac{1}{2}\Delta} - R', \quad . \quad (10.)$$

or for computation without logarithms

$$E_s = \frac{x + R' \left(\cos s - \cos \frac{1}{2}\Delta\right)}{\cos \frac{1}{2}\Delta} \quad . \quad . \quad (11.)$$

Example. Let $D' = 7^{\circ} 20'$, $\Delta = 42^{\circ}$, and for the spiral let n = 9, c = 23, giving $s = 7^{\circ} 30'$, and for $(n + 1), D_s = 7^{\circ} 15' 04''.$

log 0.978743 Eq. (10) x $\frac{1}{2} \triangle 2I^{\circ}$ a. c. log cos 0.029848

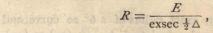
Io. 200
 I.008591

$$R'$$
 7° 20'
 log
 2.893118

 s
 7° 30'
 log
 cos 9.996269

 $\frac{1}{2} \triangle 21^\circ$
 a. c. log
 cos 0.029848

2.919235


Io. Given: a arco ents find the

(-0)

20. Given: The angle \triangle at the vertex and the distance $VH = E_s$, to determine the radius R' of a circular curve with spirals connecting the tangents and passing through the point H. Fig. 5.

Solving eq. (11) for R' we have

But as this expression involves x and s of a spiral dependent on the value of R' we must first find R' approximately, then select the spiral, and finally determine the exact value of R' by eq. (12). The radius R of a simple curve passing through the point H is a good approximation to R'. It is found by eq. (27) Field Engineering:

or the degree of curve D may be found by dividing the external distance of a 1° curve for the angle \triangle by the given value of E_i . But evidently the value of D' will be greater than D, and we may assume D' to be from 10' to 1° greater according to the given value of \triangle , the difference being more as \triangle is less. We now select from Table III. a value of D_s suited to D' so assumed, and corresponding at the same time to any desired length of spiral. Since D_s so selected corresponds to (n + 1) we take the values of n and x from the next line above D_s in the table, find the value of s from Table IV., and by substituting them in eq. (12) derive the true value of R' for the spiral selected.

Example. Let $\triangle = 42^{\circ}$ and $E_s = 70$, to find the value of R' with suitable spirals.

From table of externals for 1° curve, when $\triangle = 42^{\circ}$ E = 407.64, which divided by 70 gives 5°.823; or D = 5° 50'. Assume D' say 20' greater, giving $D' = 6^{\circ}$ 10' approx. If we desire a spiral about 300 feet long we find, Table III., n = 10, c = 30, and for $(n + 1) D_s = 6^{\circ} \circ 6' \cdot 49''$. For n = 10, $s = 9^{\circ} \cdot 10'$.

Eq. (12) $\cos \frac{1}{2} \triangle$, 21°	.93358	z) be Sunies
()	70	$R' = \frac{L_T}{L}$
h lange og og bra ster	65.35060 16.768	et as this capa
il, and finally determine th	48.5826	log 1.686481
cos s 9° 10' .98723	Prista (18)	net value of R
$\cos \frac{1}{2} \bigtriangleup 21^\circ$.93358	.05365	log 8.729570

 $\therefore R' = rad. (say) 6^{\circ} 20' curve. 905.55 2.956911$

Proof. Take the exact radius of a 6° 20' curve and the above spiral and calculate E_s by eq. (10) or (11). We shall obtain $E_s = 69.97$. Again: if we desire a spiral of 200 feet, we find, Table III., n = 8, c = 25, and for (n + 1) $D_s = 6^\circ$, and by eq. (12) R' = rad. of (say) $6^\circ \circ 2'$ curve; and by way of proof we find $E_s = 69.96$.

Again: if we desire a spiral of about 400 feet, we find, Table III., n = 12, c = 33, $s = 13^{\circ}$, and for (n + 1) $D_s = 6^{\circ} 34' \circ 7''$. Hence by eq. (12) R' =rad. of (say) $6^{\circ} 50'$ curve. By way of proof we find eq. (10) $E_s = 69.95$.

Remark. It is thus evident that a variety of curves with suitable spirals will satisfy the problem, but D' is increased as the spiral is lengthened—for in the example, with a 200 ft. spiral, $D' = 6^{\circ} \circ 2'$; with a 300 ft. spiral, $D' = 6^{\circ} 20'$; and with a 396 ft. spiral, $D' = 6^{\circ} 50'$. Therefore the length of spiral, as well as the value of Δ , must be considered in first assuming the value of D' as compared with D of a simple curve. **21.** In case the value of R', as calculated by eq. (12), should give a value to D' inconsistent with the spiral assumed, we may easily ascertain by consulting the table what spiral will be suitable. Choosing a spiral of the same number of chords, but of a different chord-length c, we may calculate R' (a new value) as before; or the work may be somewhat abbreviated by the following method:

Given: a change in the value of x, eq. (12) to find the corresponding change in the value of R'; n being constant.

If the values of $E_n riangle$, and s remain unchanged, we find, by giving to x any two values, and subtracting one resulting value of R' from the other,

diff.
$$R' = \frac{-\dim x}{\cos s - \cos \frac{1}{2}\Delta}$$
 (13.)

that is, R' increases as x decreases, and the differences bear the ratio of $\frac{I}{\cos s - \cos \frac{1}{2}\Delta}$.

Example. Let $\Delta = 42^\circ$, $E_s = 70$, and for the spiral let n=10, c=30, $s=9^\circ 10'$, as in the last example, giving R' = 905.55; to find the change in R' due to changing c from 30 to 29.

Eq. (13)	for $c =$	$_{30}, x =$	16.768
	for $c =$	29, $x =$	16.209

diff. x	•559	log 9.7474
$\cos s - \cos \frac{1}{2} \Delta$ (as b	efore) .05365	log 8.7296
diff. R'	10.42	1.0178
old value	905.55	a. 198
new <i>R</i> '	915.97 D'=	= (say) 6° 16',

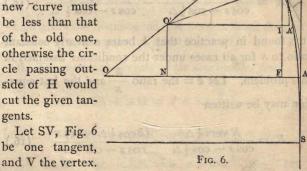
which agrees well with $D_s = 6^\circ 19' 29''$ for (n + 1) in the new spiral.

If we prove this result by calculating the value of E_s for these new values by eq. (10) we shall find $E_s = 69.93$.

The slight discrepancy between these calculated values of E_{\bullet} and the original is due solely to assuming the value of D' at an exact minute instead of at a fraction.

and, he chilar to r my two values, and subtracting one

and the filter


CHAPTER IV.

SPECIAL PROBLEMS.

22. Given : two tangents joined by a simple curve, to find a circular arc with spirals joining the same tangents, that will replace the simple curve on the same ground as nearly as may be, and preserve the same length of line. Fig. 6,

To fulfill these conditions it is evident that the new curve must be outside of the old one at the middle point H, since the

spirals are inside of the simple curve at its tangent points ; also, the radius of the new curve must be less than that of the old one, otherwise the circle passing out- o side of H would cut the given tangents.

Let AH be one half the simple curve, and O its centre. Let SL be one spiral, LH' one half the new circular

M

arc, and O' its centre. Draw the bisecting line VO, the radii AO = R and LO' = R', and the perpendicular LM = x. Then MS = y. Produce the arc H'L to A' to meet the radius O'A' drawn parallel to OA, and let $\frac{1}{2}\Delta$ = the angle AOH = A'O'H'. Let s = the angle A'O'L = the angle of the spiral SL. Let h = the radial offset HH' at the middle point of the curve. Draw O'N and LF perpendicular to OA, LF intersecting O'A' at I.

a. To find the radius R' of the new arc LH' in terms of a selected spiral SL.

We have from the figure AO = ML + FN + NO. But AO = R, ML = x, $FN = LO' \cos s = R' \cos s$ and $NO = O'O \cos \frac{1}{2} \triangle = (OH' - O'H') \cos \frac{1}{2} \triangle = (h + R - R') \cos \frac{1}{2} \triangle$; and substituting we have

 $R = x + R' \cos s + (h + R - R') \cos \frac{1}{2} \triangle$. (14.)

care at its tan-

whence

$$R' = \frac{R \operatorname{vers} \frac{1}{2} \Delta}{\cos s - \cos \frac{1}{2} \Delta} - \frac{\hbar + \cos \frac{1}{2} \Delta + x}{\cos s - \cos \frac{1}{2} \Delta}.$$
 (15.)

It is found in practice that h bears a nearly constant ratio to x for all cases under the conditions assumed in this problem. Let k = the ratio $\frac{h}{x}$ and the last equation may be written

$$R' = \frac{R \operatorname{vers} \frac{1}{2} \bigtriangleup}{\cos s - \cos \frac{1}{2} \bigtriangleup} - \frac{\left(k \cos \frac{1}{2} \bigtriangleup + \mathbf{1}\right) x}{\cos s - \cos \frac{1}{2} \bigtriangleup} \quad (16.)$$

which gives the radius of the new arc LH' in terms of s, x and k.

b. To find the offset h = HH': From eq. (14) we derive

$$\hbar \cos \frac{1}{2} \Delta = R \left(\mathbf{I} - \cos \frac{1}{2} \Delta \right) - R' \left(\mathbf{I} - \operatorname{vers} s \right) + R' \cos \frac{1}{2} \Delta - x = R \left(\mathbf{I} - \cos \frac{1}{2} \Delta \right) - R' \left(\mathbf{I} - \cos \frac{1}{2} \Delta \right) + R' \operatorname{vers} s - x = (R - R') \operatorname{vers} \frac{1}{2} \Delta + R' \operatorname{vers} s - x.$$

Hence

 $h = (R - R') \operatorname{exsec} \frac{1}{2} \bigtriangleup + \frac{R' \operatorname{vers} s}{\cos \frac{1}{2} \bigtriangleup} - \frac{x}{\cos \frac{1}{2} \bigtriangleup}$ (17.)

which gives the value of h in terms of s, x and R'.

c. To find the value of d = AS:

We have from the figure SM = SA + NO' + IL. But SM = y, SA = d, $NO' = OO' \sin \frac{1}{2} \triangle$ and $IL = LO' \sin s$, and by substitution,

$$y = d + (h + R - R') \sin \frac{1}{2} \bigtriangleup + R' \sin s.$$

Hence

 $d = y - [(h + R - R') \sin \frac{1}{2} \bigtriangleup + R' \sin s]$ (18.)

which gives the distance on the tangent from the point of curve A to the point of spiral S.

d. To compare the lengths of the new and old lines :

SAH = SA + AH = d + 100 $\frac{\frac{1}{2}\Delta}{D}$, \therefore (19.)

in which D is the degree of curve of AH;

 $SLH' = SL + LH' = n \cdot c + 100 \frac{\frac{1}{2} \triangle - s}{D'}$ (20.)

in which D' is the degree of curve of LH'.

If the spiral and arc have been properly selected, the two lines will be of equal length or practically so.

The last two equations assume the circular curves to be measured by 100 foot chords in the usual manner, but when the curves are sharp it is often desirable that they should agree in the *length of actual arcs*, especially where the rail is already laid on the simple curve. For this purpose we use the formulæ

SAH (arc) =
$$d + R \cdot \frac{\Delta}{2} \cdot \frac{\pi}{180}$$
 . (21.)

SLH' (arc) =
$$n \cdot c + R' \left(\frac{\Delta}{2} - s\right) \frac{\pi}{180}$$
 (22.)

in which the angle is expressed in degrees and decimals. If the odd minutes in the angle cannot be expressed by an exact decimal of a degree, the angle should be reduced to minutes, and the divisor of π changed from 180 to 10800.

The value of
$$\frac{\pi}{180}$$
 is .0174533 log 8.241877

$$\frac{\pi}{10800}$$
 is .00029089 " 6.463726.

The length of spiral is given by chord measure in the last equations, since the chords are so short and subtend such small angles that the difference between chord and arc is not material to the problem.

e. To select a spiral in a given case, we require to know approximately the value of D', and to select the spiral (n. c) such that the value of D, for (n + 1) shall not differ greatly from the value of D'. To aid in find-

66

66

ing approximate values of D' and k, Table V. has been prepared for curves ranging from 2° to 16° and central angles (\triangle) ranging from 10° to 80° .

Assume s at pleasure (less than $\frac{1}{2} \triangle$), which fixes the value of n. Then inspect Table V. opposite n for values of D and \triangle next above and below the values of D and \triangle in the given problem, and by inference or interpolation decide on the probable values of k and D'. Then in Table III. select that value of c which gives D_s for (n + 1) most nearly agreeing with D'. Now calculate R' by eq. (16), and as this will usually give the degree of curve D' fractional, take the value of D' to the nearest minute only, and assume the corresponding value of R' as the real value of R'. A table of radii makes this operation very simple.

But should it happen that D' differs too widely from from $D_{s(n+1)}$ to make an easy curve, increase or diminish the chord-length c by 1, thus giving a new value to x in eq. (16), and also a new value of $D_{s(n+1)}$ with which to compare the resulting D'. In changing x only the last term of eq. (16) is affected, and the first term does not require recalculation.

f. When the value of R' is decided, substitute it in eq. (17) and calculate h. But if it happens that the value of R' selected differs not materially from the result of eq. (16), we have at once h = kx; or in case the value of R' is changed considerably from the result of eq. (16), the corresponding change in h will be

diff. $h = -\frac{\cos s - \cos \frac{1}{2}\Delta}{\cos \frac{1}{2}\Delta}$ diff. R', $(22\frac{1}{2})$

which may therefore be applied as a correction to h = kx, and we thus avoid the use of eq. (17). Eq. $(22\frac{1}{2})$ is derived from eq. (15) by supposing h to have any two values, and subtracting the resulting values of R' from each other. Note that h diminishes as R' increases, and vice versa.

When R' and h are found, proceed to find d by eq. (18), and the length of lines by eq. (19), (20), or by (21), (22), as may be preferred. But to produce equality of actual arcs, k must be a little greater than when equality by chord-measure is desired.

Should the lines not agree in length so nearly as desired, a change of one minute \pm in the value of D'may produce the desired result, but any such change necessitates, of course, a recalculation of h and d.

The values of k in Table V. appear to vary irregularly. This is due to the selection of D' to the nearest minute, and also to the choice of spiral chord-lengths, c, not in an exact series. The reader is recommended to supplement this table by a record of the problems he solves, so that the values of R' and k may be approximated with greater certainty.

Example. Given a 6° curve, with a central angle of $\triangle = 50^{\circ}$ 12', to replace it by a circular arc with spirals, preserving the same length of line. Assume $s = 7^{\circ} 30'$ giving n = 9.

Since 6° is an average of 4° and 8°, while 50° 12' is nearly an average of 40° and 60°, we examine Table V. under 4° curve and 8° curve, and opposite $\Delta = 40^{\circ}$ and 60° on the same line as $s = 7^{\circ}$ 30', and take an average of the four values of $D_{s(n+1)}$, thus found; also of the four values of k; we thus find approx. k =.0885, and $D' = 6^{\circ}$ 18' ±. Now looking in Table III., opposite n = 9, we find that when c = 26, $D_{s(n+1)} =$ 6° 24' 48", we therefore assume c = 26, and proceed to calculate R' by eq. (16).

SPECIAL PROBLEMS.

Eq. (16) cos s 7° 30'	•99144	'ðr	To a Strange
$\cos \frac{1}{2} \triangle 25^{\circ} \circ 6'$.90557	30/1	T & anist le
still distance join a give	.08587 a. c.	log	1.066159
R 6° 6°		log	2.980170
vers $\frac{1}{2}$ \bigtriangleup 25° o6' \bigtriangleup	Angel and A	log	8.975116
	1050.6	log	3.021445
$\cos s - \cos \frac{1}{2} \Delta$	× 1	log	1.066159
$1 + k \cos \frac{1}{2} \Delta = 1.080$	001 X		0.033424
<i>x</i>	Participe 0		1.031989
- dual at she a - 10 (128.11	135.4	F	2.131572
	and the second s		
R' (say 6° 16')	915.2		
Eq. (17) $R 6^{\circ}$ 955.3	66		1 (05) - 100
Eq. (17) $R 6^{\circ}$ 955.3 $R' 6^{\circ} 16' 914.7$			
(R - R') 40.0	516	log	1.608697
exsec $\frac{1}{2}\Delta$ 25° o6'		log	9.018194
	4.235	log	0.626891
<i>R</i> ′ 6° 16′		log	2.961303
vers s , 7° 30'	= 0.002	log	7.932227
$\cos \frac{1}{2}\Delta$ 25° 06'		log	0.043079
	8.642	log	0.936609
.23.	12.877	ariso	Com
x	//	log	1.031989
$\cos \frac{1}{2} \triangle 25^{\circ} .06'$	a. c.		0.043079
1 log 8.2 (1877	11.887	°I.	1.075068
corr. h sol dr b A	0.990	69	R
Eq. (18) $(R - R')$	40.616	100	
Charlene Soc & Grant 1	41.606	log	1.619156
$\sin \frac{1}{2} \Delta 25^{\circ} 06'$	ST. COLLER	log	9.627570
514-001	17.649	log	1.246726

THE RAILROAD SPIRAL.

$\begin{array}{ccc} R' & 6^{\circ} & 16' \\ \sin s & 7^{\circ} & 30' \end{array}$		log log	2.961303 9.115698
oficers for the second	119.399	log	2.077001
light barner.	137.048 233.579		A REAL
Eq. (19) $\frac{25.1^{\circ} \times 100}{6} =$	96.531 418.333		- 1863 0 \$ + 1 0 0 4 + 1
. SAH	514.864		
Eq. (20) $(\frac{1}{2} \triangle - s) = 1056$ D' 376	, × 100	A CONTRACTOR OF THE OWNER OWNER OF THE OWNER	5.023664 2.575188
n.c 9×26	280.851 234.	14 19 19 1	2.448476
SLH' Difference	514.851 013		

Comparison of actual arcs.

Eq. (21) 25.1° log 1.399674	Eq. (22) 17.6° log 1.245513
1° log 8.241877	
R 6° log 2.980170	
. 418.525 log 2.621721	280.991 log 2.448693
418.525 log 2.621721 <i>a</i> 96.531	<i>n.c</i> 234.
515.056	514.991
	Difference = -0.065

32

23. Given : a simple curve joining two tangents, to move the curve inward along the bisecting line VO so that it may join a given spiral without change of radius. Fig. 7.

Let SL be the given spiral, AH one-half of the given curve, and HL a portion of the same curve in its new position, and compounded with the spiral at L.

To find the distance p_{h}^{O} h = HH' = OO':

Since the new radius is equal to the old one, or R' = R, we have from eq. (17) by changing the sign of h, since it is taken in the opposite direction,

 $h = \frac{x - R \operatorname{vers} s}{\cos \frac{1}{2} \Delta}$

To find the distance d = AS:

Changing the sign of h in eq. (18) and making R' =R we have

 $d = y - (R \sin s - h \sin \frac{1}{2} \Delta)$ (24.)

This problem is best adapted to curves of large radius and small central angle.

Example. Given, a curve $D = 1^{\circ} 40'$ and $\triangle =$ 26° 40', and a spiral $s = 1^{\circ}$, n = 3, and c = 40, to find h and d and the length LH'.

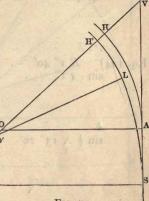
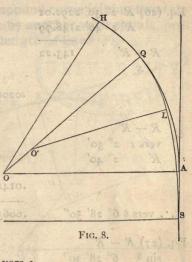


FIG. 7.

. . . . (23.)

ve joining two tangents, to along the bisecting that VO		log	9.7309
x is large x is large x is large x	ioin a give		9.9109 0.0119
	.837		9.9228
h			given cun
Eq. (24) $R I^{\circ} 40'$ sin $s I^{\circ}$	une ourve	log	
	59.999	hol	1.778144
$\frac{h}{\sin \frac{1}{2} \bigtriangleup 13^{\circ} 20'}$	99 - Middae - 99	log "	9·4757 9·3629
	.069	he ner the o	8.8386
y and	59.930 119.996		(rz) by p
$\therefore d$ H'O'L = $(\frac{1}{2} \Delta - s) = 12^{\circ}$	60.066 20' ···		- 740 feet.

24. Given, a simple curve joining two tangents, to compound the curve near each end with an arc and spiral joining the tangent without disturbing the middle portion of the curve. Fig. 8.


Let H be the middle point of the given curve, Q the point of compounding with the new arc, and L the point where the new arc joins the spiral SL.

Let s = the spiral angle, and let $\theta = AOQ$. Now in this figure AOQS will be analogous to AOH'S of Fig.6, if in the latter we suppose H' to coincide with H or h = o. If, therefore, in eq. (15) we write θ for $\frac{1}{2} \triangle$ and make h = o, we have for the new radius O'Q,

 $R' = \frac{R \operatorname{vers}^{0} - x}{\cos s - \cos \theta}, \quad \dots \quad (25.)$

SPECIAL PROBLEMS.

in terms of θ and the spiral assumed. But as the value of D'resulting is likely to be fractional and must be adhered to, it is preferable to assume R' a little less than R, select a suitable spiral and calculate the angle θ . Resolving eq. (17) after making $\hbar = 0$ and replacing $\frac{1}{2} \Delta$ _____

$$\operatorname{vers} 0 = \frac{x - k}{R - R'}$$

The angle θ so found must be less than $\frac{1}{2} \triangle$, and indeed for good'practice should not exceed $\frac{1}{3} \triangle$. If too large, θ may be reduced by assuming a smaller value of R', and repeating the calculation with a suitable spiral. Otherwise it will be preferable to use one of the foregoing problems in place of this. This problem is specially useful when the central angle is very large.

To find the distance d = AS, we have only to write 0 for $\frac{1}{2} \triangle$ and make h = o in eq. (18), whence

 $d = y - [(R - R') \sin \theta + R' \sin s] \quad . \quad . \quad (27.)$

Example. Given a curve $D = 2^{\circ} 30'$, $\Delta = 35^{\circ}$, to compound it with a curve $D' = 2^{\circ} 40'$ and a spiral $s = 2^{\circ} 30'$, n = 5, c = 37.

(26.)

THE RAILROAD SPIRAL.

Eq. (26) R 2° 30' 2292.01 R' 2° 40' 2148.79 R-R'log 2.156004 143.22 x log 0.471203 .020663 log 8.315199 a. c. log 7.843996 R-R'log 6.978536 vers s 2° 30' · log 3.332193 2° 40' R'.014280 log 8.154725 . . vers 0 6° 28' 30" .006383 Eq. (27) R - R'log 2.156004 sin 6 6° 28' 30" 9.052192 16.151 1.208196 2° 40′ 3.332193 8.639680 R 2° 30' $\sin s$ 93.729 1.971873 109.880 184.962 y ··· d vino ond or . 75.082 AH sonadw (18), whenes HA 700. 775.082 $SL; = n \cdot c = 185.00$ LQ, $\theta - s = 3^{\circ} 58' 30'' 149.06$ QH, $\frac{1}{2} \bigtriangleup - \theta = II^{\circ} OI' 30'' 44I.00 775.060$ Difference -.022

36

25. Given : a compound curve joining two tangents, to replace it by another with spirals, preserving the same length of line. Fig. 9.

Let $\triangle_2 = AO_2P$, the angle of the arc AP, and $\triangle_1 =$ PO_1B , the angle of the arc PB. Let $R_2 = AO_2$, and $R_1 = BO_1$.

A dopting the method of § 22, the offset λ must be made at the point of compound curve P instead of at the middle point. Considering first the arc of the larger radius AO₂, the formulæ of §22 will be made to apply to this case b



Fig. 9. Jan FIG. 9. anter and Lank

apply to this case by writing \triangle_2 in place of $\frac{1}{2} \triangle$, and R_2 in place of R, whence eq. (16)

 $R_{2}' = \frac{R_{2} \operatorname{vers} \Delta_{2}}{\cos s - \cos \Delta_{2}} - \frac{(k \cos \Delta_{2} + 1) x}{\cos s - \cos \Delta_{2}} \dots (28.)$ and eq. (17) $h = (R_{2} - R_{2}') \operatorname{exsec} \Delta_{2} + \frac{R_{2}' \operatorname{vers} s}{\cos \Delta_{2}} - \frac{x}{\cos \Delta_{2}} \quad (29.)$ and eq. (18) $d = y - [(h + R_{2} - R_{2}') \sin \Delta_{2} + R_{2}' \sin s] \dots (30.)$ But in considering the second arc PB, we must retain the value of h already found in eq. (29) in order that the arcs may meet in P'. We therefore use eq. (15) which, after the necessary changes in notation, becomes

$$R_1' = \frac{R_1 \operatorname{vers} \Delta_1}{\cos s - \cos \Delta_1} - \frac{\hbar \cos \Delta_1 + x}{\cos s - \cos \Delta_1}, \quad \dots \quad (31.)$$

which value of R_1' must be adhered to.

The spiral selected for use in the last equation is independent of the spiral just used in connection with R_2' . It should be so selected that while suitable for R_1' its value of x may be equal to $\frac{h}{k}$ as nearly as may be, the value of k being inferred from Table V. for D' and $2 \Delta_1$.

Assuming the value of R_1 found by eq. (31), even though D_1 be fractional, we may verify the value of h by

 $h = (R_1 - R_1') \operatorname{exsec} \Delta_1 + \frac{R_1' \operatorname{vers} s}{\cos \Delta_1} - \frac{x}{\cos \Delta_1} (32.)$

and then proceed to find d' = BS' by

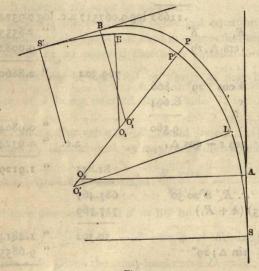
 $d' = y - [(h + R_1 - R_1') \sin \triangle_1 + R_1' \sin s] (33.)$

Example. Given the compound curve $D_1 = 8^\circ$, $\Delta_1 = 29^\circ$ and $D_2 = 6^\circ$, $\Delta'_2 = 25^\circ 66'$: to replace it by another compound curve connected with the tangents by spirals.

Considering first the 6° branch of the curve, we may assume the spiral $s = 7^{\circ}30'$, n = 9, c = 26. This part of the problem is then identical with the example given in § 22, by which we find h = .990 and d = 96.531.

To select a spiral for the 8° branch, having reference at the same time to this value of h; we find in Table V. under $D = 8^{\circ}$ and opposite $\triangle = 2 \triangle_1 = 58^{\circ}$ or say 60°, that the given value of h falls between the tabular values of h for $nc = 9 \times 20$, and $nc = 10 \times 22$. We therefore infer that the spiral $nc = 9 \times 21$ is most suitable to this case. Adopting this, we have

Eq. (31) $\cos s 7^{\circ} 30' .99144$ $\cos \triangle_1 29^{\circ} .87462$


Eq.

$R_1 \qquad 8^{\circ}$ vers $\triangle_1 29^{\circ}$	11682	log 9.067517 a.c.	"	2.855385 9.098229
	.866 8.694	769.302	"	2.886097
and the second	9.560	P		0.980458
$\cos s - \cos s$	\triangle_1	a.c.	"	0.932483
		81.835	"	1.912941
R1' 8°20'	30'	687.467		
$(33)(h+R_1)$	11/14	717.769		
$\sin \Delta_1 29^\circ$		30.302		1.481471 9.685571
Sty Motor		14.691	"	1.167042
$R_1' 687.467$ sin s 7°30'		r the following f	***	2.837251 9.115698
12) ; 3	Yers A	89.732		1.952949
c) anonohora co		104·423 188.660	6.01	to the second
and in d (And	1 A 17	84.237		

For the methods of computing the lengths of lines, see § 22.

26. Given : a compound curve joining two tangents, to move the curve inward along the line PO₂ so that spirals may be introduced without changing the radii. Fig. 10.

The distance h = PP' is found for the arc of larger

radius AO₂ by the following formula derived by analogy from eq. (23):

$$h = \frac{x - R_2 \operatorname{vers} s}{\cos \Delta_2}; \quad . \quad . \quad (34.)$$

and for the distance d = AS we have analogous to eq. (24):

 $d = y - (R_2 \sin s - h \sin \Delta_2) \quad . \quad (35.)$

01:05:20 J

Now the same value of h, found by eq. (34) must be used for the arc PB, and a spiral must be selected which will produce this value. To find the proper spiral, we have from eq. (34) after changing the subscripts,

$$x = R_1 \operatorname{vers} s + h \cos \Delta_1 \quad . \quad (36.)$$

The last term is constant. The values of x and s must be consistent with each other, and approximately so with the value of R_1 . Assume s at any probable value, and calculate x by eq. (36). Then in Table III. look for this value of x opposite n corresponding to s, and note the corresponding value of the chord-length c. Compare D_s of the table with D_1 and if the disagreement is too great select another value of s and proceed as before.

The term R_1 vers s may be readily found, and with sufficient accuracy for this purpose, by dividing the value of R_1° vers s Table IV. by D_1 . If the calculated value of x is not in the Table III., it may be found by interpolating values of c to the one tenth of a foot, since for a given value of s or n the values of x and y are proportional to the values of c.

When the proper spiral has been found and the value of c determined, it only remains to find the value of d =BS' by

$$d = y - (R_1 \sin s - h \sin \Delta_1), \quad (37.)$$

in which the value of y will be taken according to the values of c and s just established.

Example. Given: $D_2 = 1^{\circ}40'$, $\Delta_2 = 13^{\circ}20'$, $D_1 = 3^{\circ}$, and $\Delta = 22^{\circ}40'$, to apply spirals without change of radii. Fig. 10.

Assume for the 1° 40' arc the spiral $s = 1^{\circ}$, n = 3, c = 40. This part of the problem is then identical with the example given in § 23, from which we find h = 0.299.

For the second part, if we assume $s = 1^{\circ} 40'$, n = 4, and find by Table IV. R_1 vers $s = \frac{2.424}{3} = 0.808$, we have by eq. (36)

x = 0.808 + 0.277 = 1.085,

the nearest value to which in Table III. is under c = 25, giving $D_s = 2^\circ 40'$, or for (n + 1), $D_s = 3^\circ 20'$, which is consistent with $D_1 = 3^\circ$. By interpolation we find that our value of x corresponds exactly to c = 24.85, n = 4, and therefore the spiral should be laid out on the ground by using this precise chord.

In order to find d = BS' we first find the value of y by interpolation for c = 24.85, when by eq. (37) we have

d = 99.391 - (55.554 - 0.115) = 43.952.

27. Given : a compound curve joining two tangents, to introduce spirals without disturbing

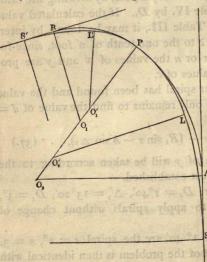


Fig. 11.

the point of compound curvature P. Fig. 11.

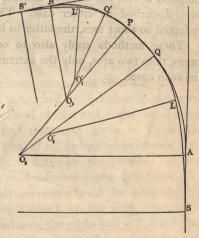
> a. The radius of each arc may be shortened, giving two new arcs compounded at the same point
> A. P. Having selected a suitable spiral, we have for the arc AP
> s by analogy from eq. (15), since h = 0,

$$R_2' = \frac{R_2 \operatorname{vers} \Delta_2 - x}{\cos s - \cos \Delta_2}; \quad \dots \quad \dots \quad (38.)$$

and, similarly, after selecting another spiral for the arc PB,

$$R_1' = \frac{R_1 \operatorname{vers} \Delta_1 - x}{\cos s - \cos \Delta_1} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (39.)$$

From eq. (18) we have for the distance AS,


 $d = y - [(R_2 - R_2') \sin \triangle_2 + R_2' \sin s], . (40.)$ and for the distance BS',

 $d' = y - [(R_1 - R_1') \sin \triangle_1 + R_1' \sin s] \cdot (41.)$

The values of D_1' and D_2' resulting from eq. (39) and (40) must be adhered to, even though involving a fraction of a minute.

b. Either arc may be again compounded at some point Q, leaving the portion PQ undisturbed, as explained in § 24. Fig. 12.

Let $\theta =$ the an-

F1g. 12.

gle AO₂Q, and we have from eq. (26), after selecting a suitable spiral and assuming R_2' ,

vers $\theta = \frac{x - R_2' \text{ vers } s}{R_2 - R_2'}$ (42.)

For the distance AS, we have from eq. (27)

$$d = y - [(R_2 - R_2') \sin \theta + R_2' \sin s] \quad (43.)$$

Similar formulæ will determine the angle $\theta = BO_1Q'$ and the distance BS' for the other arc PB in terms of a suitable spiral : thus,

$$\operatorname{vers} \theta = \frac{x - R_1' \operatorname{vers} s}{R_1 - R_1'} \quad . \quad . \quad . \quad (44.)$$

 $d = y - [(R_1 - R_1') \sin^{\theta} + R_1' \sin s] \quad . \quad (45.)$

The method \mathbf{a} may be adopted with one arc and the method \mathbf{b} with the other if desired, since the point P is not disturbed in either case. The former is better adapted to short arcs, the latter to long ones.

These methods apply also to compound curves of more than two arcs, only the extreme arcs being altered in such cases.

CHAPTER V.

FIELD WORK.

28. HAVING prepared the necessary data by any of the preceding formulæ, the engineer locates the point S on the ground by measuring along the tangent from V or from A. He then places the transit at S, makes the verniers read zero, and fixes the cross-hair upon the tangent. He then instructs the chainmen as to the proper chord c to use in locating the spiral, and as they measure this length in successive chords, he makes in succession the deflections given in Table II. under the heading "Inst. at S," lining in a pin or stake at the end of each chord in the same manner as for a circle.

When the point L is reached by (n) chords, the transit is brought forward and placed at L; the verniers are made to read the first deflection given in Table II. under the heading "Inst. at n" (whatever number n may be), and a backsight is taken on the point S. If the verniers are made to read the succeeding deflections, the cross-hair should fall successively on the pins already set, this being merely a check on the work done, until when the verniers read zero, the cross-hair will define the tangent to the curve at L. From this tangent the circular arc which succeeds may be located in the usual manner.

In case it became necessary to bring forward the transit before the point L is reached, select for a transitpoint the extremity of any chord, as point 4, for example, and setting up the transit at this point, make the verniers read the first deflection under "Inst. at 4," Table II., and take a backsight on the point S. Then, when the reading is zero, the cross-hair will define the tangent to the curve at the point 4, and by making the deflections which follow in the table opposite 5, 6, &c., those points will be located on the ground until the desired point L is reached by n chords from the beginning S.

The transit is then placed at L, and the verniers set at the deflection found under the heading "Inst. at n" (whatever number n may be), and opposite (4) the point just quitted. A backsight is then taken on point 4, and the tangent to the curve at L found by bringing the zeros together, when the circular arc may be proceeded with as usual.

29. To locate a spiral from the point L running toward the tangent at S: we have first to consider the number of chords (n) of which the spiral SL is composed. Then, placing the transit at L, reading zero upon the tangent to the curve at L, look in Table II. under the heading "Inst. at n," and make the deflection given just above o° oo' to define the first point on the spiral from L toward S; the next deflection, reading up the page, will give the next point, and so on till the point S is reached.

The transit is then placed at S; the reading is taken from under the heading "Inst. at S," and on the line nfor a backsight on L. Then the reading zero will give the tangent to the spiral at the point S, which should coincide with the given tangent.

If S is not visible from L, the transit may be set up at any intermediate chord-point, as point 5, for example. The reading for backsight on L is now found under the heading "Inst. at 5," and on the line *n* corresponding to L; while the readings for points between 5 and S are found *above* the line 5 of the same table. The transit being placed at S, the reading for backsight on 5, the point just quitted, is found under "Inst. at S" and opposite 5, when by bringing the zeros together a tangent to the spiral at S will be defined.

30. Since the spiral is located exclusively by its chord-points, if it be desired to establish the regular 100foot stations as they occur upon the spiral, these must be treated as plusses to the chord-points, and a deflection angle will be interpolated where a station occurs. To find the deflection angle for a station succeeding any chordpoint : the differences given in Table II. are the deflections over one chord-length, or from one point to the next. For any intermediate station the deflection will be assumed proportional to the sub-chord, or distance of the station from the point. We therefore multiply the tabular difference by the sub-chord, and divide by the given chord-length, for the deflection from that point to the station. This applied to the deflection for the point will give the total deflection for the station.

This method of interpolation really fixes the station on a circle passing through the two adjacent chordpoints and the place of the transit, but the consequent error is too small to be noticeable in setting an ordinary stake. Transit centres will be set only at chord-points, as already explained.

31. It is important that the spiral should join the main tangent *perfectly*, in order that the full theoretic advantage of the spiral may be realized. In view of this fact, and on account of the slight inaccuracies inseparable from field work as ordinarily performed, it is usually preferable to establish carefully the two points

of spiral S and S' on the main tangents, and beginning at each of these in succession, locate the spirals to the points L and L'. The latter points are then connected by means of the proper circular arc or arcs. Any slight inaccuracy will thus be distributed in the body of the curve, and the spirals will be in perfect condition.

32. A spiral may be located without deflection angles, by simply laying off in succession the abscissas y and ordinates x of Table III. corresponding to the given chord-length c. The tangent EL at any point L, Fig. 4, is then found by laying off on the main tangent the distance YE = $x \cot s$, and joining EL. In using this method the chord-length should be measured along the spiral as a check.

33. In making the final location of a railway line through a smooth country the spirals may be introduced at once by the methods explained in Chapter III. But if the ground is difficult and the curves require close adjustment to the contour of the surface, it will be more convenient to make the study of the location in circular curves, and when these are likely to require no further alterations, the spirals may be introduced at leisure by the methods explained in Chapter IV. The spirals should be located before the work is staked out for construction, so that the road-bed and masonry structures may conform to the centre line of the track.

34. When the line has been first located by circular curves and tangents, a description of these will ordinarily suffice for right of way purposes; but if greater precision is required the description may include the spirals, as in the following example:

"Thence by a tangent N. 10° 15'E., 725 feet to station 1132 + 12; thence curving left by a spiral of 8 chords, 288 feet to station 1135; thence by a 4° 12' curve (radius 1364.5 feet), 666.7 feet to the station 1141+66.7; thence by a spiral of 8 chords 288 feet to station 1144 + 54.7 P.T. Total angle 40° left. Thence by a tangent N. 29° 45' W.," &c.

35. When the track is laid, the outer rail should receive a relative elevation at the point L suitable to the circular curve at the assumed maximum velocity. Usually the track should be level transversly at the point S, but in case of very short spirals, which sometimes cannot be avoided, it is well to begin the elevation of the rail just one chord-length back of S on the tangent.

36. Inasmuch as the perfection of the line depends on adjusting the inclination of the track proportionally to the curvature, and in *kceping it so*, it is extremely important that the points S and L of each spiral should be secured by permanent monuments in the centre of the track, and by witness-posts at the side of the road. The posts should be painted and lettered so that they may serve as guides to the trackmen in their subsequent efforts to grade and "line up" the track. The post opposite the point S may receive that initial, and the post at L may be so marked and also should receive the figures indicating the degree of curve.

37. The field notes may be kept in the usual manner for curves, introducing the proper initials at the several points as they occur. The chord-points of the spiral may be designated as *plusses* from the last regular station if preferred, as well as by the numbers 1, 2, 3, &c., from the point S. Observe that the chord numbers always begin at S, even though the spiral be run in the opposite direction.

TABLE

ELEMENTS OF THE SPIRAL

-	A Designation of the				
Point n.	Degree of curve Ds.	Spiral angle s.	Inclina- tion of chord to axis of Y.	Latitude of each chord. 100 × cos Incl.	Sum of the lati- tudes, y.
TOTAL ST	vitade		SERT.	ie the assumed	avenes antipping
0	0° 00'	0° 00'	0° 00'	a la farma a la	1
I	10'	IO	05'	99.99989423	99.99989423
2	20'	30'	20	99.99830769	199.99820192
3	30'	I	45	99.99143275	299.98963467
4	40'	I° 10'	I° 20'	99.97292412	399.96255879
5	50'	2° 30'	2° 05'	99.93390007	499 89645886
6	I°	2' 20'	3°	99.8629535	599.7594123
7	I° 10'	1° 10'	4 05	99.7461539	699.5055662
8	I° 20'	6	5 20	99.5670790	799.0726452
9	1° 20'	7° 30'	6° 45'	99.3068457	898.3794909
IO	I° 10'	O TO	8° 20'	98.944164	997.3236549
II	T° 50'	II°	10° 05'	98.455415	1095.779070
12	2°	13°	12°	97.814760	1193.593830
13	2° 10'	15 10	14° 05'	96.994284	1290.588114
14	2° 20'	17° 30'	16° 20'	95.964184	1386.552298
15	2° 30'	20°	18° 15'	94.693014	1481.245312
16	2° 40'	22° 40'	21° 20'	93.147975	1574.393287
17	2° 50'	25° 30'	24° 05'	91.295292	1665.688579
18	3°	28° 30'	27°	89.100650	1754.789229
19	3° 10'	31° 40'	30° 05'	86.529730	1841.318959
20	3° 20'	35°	33° 20'	83.548780	1924.867739
	1	55		-3.54-7	
A STATE OF				The second second second second second	The second of
1 Santas	And St.	1154	01 053	by the degree	การณ์มีค่า สอบบรก
mina	Inisai	all ni	Point	$\operatorname{Log} \frac{x}{y} =$	Deflection angle,
111/140	Seft del	sheriai	n.	log tan i.	interingen inter
2	En la	1.1	2	and a second sec	in the second
1		- Colores			Same SP Supply
RE 513	NES" M	el adra	TOT	7.1626964	0° 05' 00."00
	Contraction of the second			7.5606380	
1920 2	CHARLE NO	Des mentes	2		
Thelen /	a base	5 47.2	3	7.8317091	
ST.			4	8.0377730	0° 37′ 29.′′99 0° 54′ 59.′′97
443,246	Tor dry	april 2	56	8.2041217	
24.72	AL AL	Sector Sector		8.3436473	1° 15' 49."90 1° 39' 59."75
14 20	1 APRIL 1		78	8.4638309	1° 39′ 59.″75 2° 07′ 29.″45
100 100	A PARTY	1	1.) ** 0 * 2 * 1 * 2	8.5691017	2° 07' 29."45 2° 38' 18."90
	and the second	S. George	9	8.6635555	2° 38' 18.''90 3° 12' 27.''95
1	1		10	8.7485340	3° 12′ 27.″95
Ellipe Car	Argune		32.5 2	and the second	and the second

OF CHORD-LENGTH, 100.

F			11/11/1		
				En la la la	Laller Del
	TOTAL ALL ALL ALL	Sum of the depart-	Logarithm,	Logarithm,	
1	Departure of each chord,	ures,	Logarithm,	Logarithm,	Point
1	cach chora,	ures,	- Capardy a series		
	100 × sin Incl.	x.	log y.	log x.	n.
		Sections when an S	ament dest nur	13. 201 01 0	
1			1	and a start of the	
1		A Survey Barrying	estino a farmera	DAGE TOTALN	0
	.1454441	.1454441	1.9999995	9.1626960	I
	.5817731	.7272172	2.3010201	9.8616641	2
	1.3089593	2.0361765	2.4771063	0.3088154	3
	2.3268960	4.3630725	2.6020194	0.6397924	4
1	3.6353009	7.9983734	2.6988800	0.9030017	56
	5.233596	13.231969	2.7779771	1.1216244	6
1	7.120730	20.352699	2.8447911	1.3086220	7
1	9.294991	29.647690	2.9025862	1.4719909	7 8
	11.75374	41.40143	2.9534598	1.6170153	9
1	14.49319	55.89462	2.9988361	1.7473701	IO
	17.50803	73.40265	3.0397231	1.8657117	II
	20.79117	94.19382	3.0768567	1.9740224	12
	24.33329	118.52711	3.1107877	2.0738177	13
	28.12251	146.64962	3.1419362	2.1662811	14
	32.14395	178.79357	3.1706260	2.2523519	15
1	36.37932	215.17289	3.1971131	2.3327875	16
1	40.80649	255.97938	3.2215938	2.4082049	17
	45.39905	301.37843	3.2442250	2.4791121	18
	50.12591	351.50434	3.2651291	2.5459307	10
	54.95090	406.45524	3.2844000	2.6000128	20
	54.95-9-	1	5	1	
	Contraction of the second				1000
		r	Deflection an-		
	Point	$\log_{\gamma}^{x} =$	gle,		Bartes
	Tome	y .	8.01		and the
	n.	log tan i.	i.	SE PROVINCE	a fitters u
1		Alter and the	· Michaels		Children .
	PART AND THE		and the second		1. 18
1	II	8.8259886	3° 49' 56."39		1. 1. 1.
	12	8.8971657	4° 30' 43. ''95	P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Planta .
	13	8.9630300	5 14 50. 28		11192
1	14	9.0243449	6° 02' 14."03	198 1 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.
	15	9.0817250	6° 52' 57 "31		R TEN
	16	9.1356744	7 46 56. 71	C. C.	and the
	17	9.1866111	8° 44' 12."26	1	100
	18	9.2348871	9° 44' 42."92		and the second
	19	9.2808016	10° 48' 27.''44	2.2	1.1
-	20	9.3246119	11° 55' 24."34	Second Second	100
	ALT BUY DE THE DIS			The section of	1-1-1
2					1

•

TABLE II.

DEFLECTION ANGLES, FOR LOCATING SPIRAL CURVES IN THE FIELD.

Rule for finding a Deflection.,

Read under the *heading* corresponding to the point at which the instrument stands, and on the *line* of the number of the point observed.

	INSTRU		ENT' AT = 0.	S.	
No. of Point, n.	Deflection f	rom i.	Tangent,		e of Deflec- on.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1° 1 2 2 3 3 4 5 6 6 7 8 9 10	00' 05 12 23 37 55 15 40 07 38 12 49 30 14 02 52 46 44 44 48 55	30" 20 30 00 50 00 29 19 28 56 .44 50 15 57 57 57 57 12 43 27 24	05' 07 10 14 17 20 24 27 30 24 27 30 34 37 34 34 37 40 44 47 50 54 57 60 63 66	30" 50 10 30 50 10 29 50 09 28 48 06 25 42 00 15 31 44 57

TABLE IIDEFLECTION ANGLES.	TABL	EII	-DEF	LECTION	ANGLES.
----------------------------	------	-----	------	---------	---------

IN	ST. AT I. s =	0°. 10'.	IN	ST. AT 2. S =	0° 30'.
No. of Point.	Deflection 'from aux. tan.	Diff. of Deflection.	No. of Point.	Deflection from aux. tan.	Diff. of Deflection.
0	05'		0	17' 30"	=/ ao!!
I	00	05' 10	I	· 10	7' 30'' 10
2	10	12 30"	2	00	15
3	22 30"	15 50	3	15	17 30
4	38 20	10 10	4	32 30	20 50
56	57 30 1° 20 00	22 30	56	53 20 I ^Q 17 30	24 10
- 12 A. P		25 50	7	I ^Q 17 30 I 45 00	27 30
7	I 45 50 2 I5 00	29 10	8	2 15 50	30 50
9	2 47 20	32 29	9	2 49 59	34 09
10	3 23 18	35 49	10	3 .27 29	37 30
II	4 02 27	39 09	II	4 08 18	40 49
12	4 44 55	42 28	12	4 52 26	44 08
13	5 30 42	45 47	13	5 39 54	50 46
14	6 19 47	49 05 52 24	14	6 30 40	54 04
15	7 12 11	55 40	15	7 24 44	57 22
16	8 07 51	58 58	16	8 22 06	60 39
17	9 06 49	62 12	17	9 22 45	63 54
18	10 09 01	65 27	18	10 26 39 11 33 40	67 10
. 19	11 14 28 12 23 08	68 40	19 20	II 33 49 I2 44 I2	70 23
20	12 23 00	Den DES J	1 20	1 10 44 10	1
				and the second se	
IN	ST. AT 3. s=	1° 00'.			1° 40'.
	ST. AT 3. s = Deflection from aux. tan.	1° 00'. Diff. of Deflection.		Deflection from aux. tan.	
No. of	Deflection from	Diff. of Deflection.	No. of	Deflection from	Diff. of Deflection.
No. of Point.	Deflection from aux. tan.	Diff. of Deflection. 9' 10''	No. of Point.	Deflection from aux. tan.	Diff. of Deflection. 10' 50''
No. of Point.	Deflection from aux. tan. 36' 40"	Diff. of Deflection. 9' 10'' 12' 30	No. of Point. 0 I 2	Deflection from aux. tan. 1° 02' 30'' 51 40 37 30	Diff. of Deflection. 10' 50'' 14 10
No. of Point. 0 I 2 3	Deflection from aux. tan. 36' 40" 27 30 15 00	Diff. of Deflection. 9' 10'' 12 30 15	No. of Point. 0 I 2 3	Deflection from aux. tan. I° 02' 30'' 5I 40 37 30 20	Diff. of Deflection. 10' 50'' 14 10 17 30
No. of Point. 0 I 2 3 4	Deflection from aux. tan. 36' 40" 27 30 15 00 20	Diff. of Deflection. 9' 10'' 12 30 15 20	No. of Point. 0 I 2 3 4	Deflection from aux. tan. I° 02' 30'' 5I 40 37 30 20 00	Diff. of Deflection. 10' 50'' 14 10 17 30 20
No. of Point. 0 I 2 3 4 5	Deflection from aux. tan. 36' 40" 27 30 15 00 20 42 30	Diff. of Deflection. 9' 10'' 12 30 15	No. of Point. 0 I 2 3 4 5	Deflection from aux. tan. I° 02' 30'' 51 40 37 30 20 00 25	Diff. of Deflection. 10' 50'' 14 10 17 30
No. of Point. 0 I 2 3 4 5 6	Deflection from aux. tan. 36' 40" 27 30 15 00 20 42 30 1° 08 20	Diff. of Deflection. 9' 10'' 12 30 15 20 22 30	No. of Point. 0 I 2 3 4 5 6	Deflection from aux. tan. I° 02' 30" 51 40 37 30 20 00 25 52 30	Diff. of Deflection. 10' 50'' 14 10 17 30 20 25
No. of Point. 0 1 2 3 4 5 6 7	Deflection from aux. tan. 36' 40'' 27 30 15 00 20 42 30 1° 08 20 1 37 30	Diff. of Deflection. 9' 10'' 12 30 15 20 22 30 25 50	No. of Point. 0 I 2 3 4 5 6 7	Deflection from aux. tan. I° 02' 30" 51 40 37 30 20 00 25 52 30 I 23 20	Diff. of Deflection. 10' 50'' 14 10 17 30 20 25 27 30 30 50 34 10
No. of Point. 0 1 2 3 4 5 6 7 8	Deflection from aux. tan. 27 30 15 00 20 42 30 1° 08 20 1 37 30 2 10 00	Diff. of Deflection. 9' 10'' 12 30 15 20 22 30 25 50 29 10 32 30 35 50	No. of Point. 0 I 2 3 4 5 6 7 8	Deflection from aux. tan. I° 02' 30" 5 I 40 37 30 20 00 25 52 30 I 23 20 I 57 30	Diff. of Deflection. 10' 50'' 14 10 17 30 20 25 27 30 30 50 34 10 37 30
No. of Point. 0 1 2 3 4 5 6 7	Deflection from aux. tan. 36' 40" 27 30 15 00 20 42 30 1° 08 20 1 37 30 2 10 00 2 45 50	Diff. of Deflection. 9' 10" 12 30 15 20 22 30 25 50 29 10 32 30 35 50 39 09	No. of Point. 0 I 2 3 4 5 6 7	Deflection from aux. tan. I° 02' 30'' 51 40 37 30 20 00 25 52 30 I 23 20 I 23 20 I 57 30 2 35 00	Diff. of Deflection. 10' 50'' 14 10 17 30 20 25 27 30 30 50 34 10 37 30 40 50
No. of Point. 0 1 2 3 4 5 6 7 8 9	Deflection from aux. tan. 36' 40" 27 30 15 00 20 42 30 1° 08 20 1 37 30 2 10 00 2 45 50	Diff. of Deflection. 9' 10" 12 30 15 20 22 30 25 50 29 10 32 30 35 50 39 09 42 29	No. of Point. 0 I 2 3 4 5 6 7 8 9	Deflection from aux. tan. I° 02' 30'' 51 40 37 30 20 00 25 52 30 I 23 20 I 23 20 I 57 30 2 35 00	Diff. of Deflection. 10' 50'' 14 10 17 30 20 25 27 30 30 50 34 10 37 30 40 50 44 09
No, of Point. 0 1 2 3 4 5 6 0 7 8 9 10	Deflection from aux. tan. 36' 40" 27 30 15 00 20 42 30 1° 08 20 1 37 30 2 10 00 2 45 50 3 24 59	Diff. of Deflection. 9' 10" 12 30 15 20 22 30 25 50 29 10 32 30 35 50 39 09 42 29 45 49	No. of Point. 0 I 2 3 4 5 5 6 0 7 8 9 J0	Deflection from aux. tan. 1° 02' 30'' 51 40 37 30 20 00 25 52 30 I 23 20 I 23 20 I 57 30 2 35 00 3 15 50	Diff. of Deflection. 10' 50'' 14 10 17 30 20 25 27 30 30 50 34 10 37 30 40 50 41 09 47 29
No, of Point. 0 I 2 3 4 5 6 6 7 8 9 10 11	Deflection from aux. tan. 36' 40" 27 30 15 00 20 42 30 1° 08 20 1 37 30 2 10 00 2 45 50 3 24 59 4 07 28 4 53 17 5 42 25	Diff. of Deflection. 9' 10'' 12 30 15 20 22 30 25 50 29 10 32 30 35 50 39 09 42 29 45 49 49 08	No. of Point. 0 1 2 3 4 5 5 6 0 7 8 9 10 11 12 13	Deflection from aux. tan. 1° 02' 30'' 51 40 37 30 20 00 25 52 30 1 23 20 1 57 30 2 35 00 3 15 50 3 59 59 4 47 28 5 3 8 16	Diff. of Deflection. 10' 50'' 14 10 17 30 20 25 27 30 30 50 34 10 37 30 40 50 44 09 47 29 50 48
No. of Point. 0 1 2 3 4 5 6 6 7 8 9 10 11 11 12 13 14	Deflection from aux. tan. 36' 40" 27 30 15 00 20 42 30 1° 08 20 1 37 30 2 10 00 2 45 50 3 24 50 4 07 28 4 53 17 5 42 25 6 34 52	Diff. of Deflection. 9' 10'' 12 30 15 20 22 30 25 50 29 10 32 30 35 50 39 09 42 29 45 49 45 49 45 49 68 52 27	No. of Point. 0 I 2 3 4 5 6 7 7 8 9 10 11 12 13 14	$\begin{array}{c c} \text{Deflection from}\\ \text{aux. tan.}\\ \hline \mathbf{I}^\circ & \mathbf{02'} & \mathbf{30''}\\ & 51 & 40\\ & 37 & 30\\ & 20\\ & 00\\ & 25\\ & 52 & 30\\ & 1 & 23 & 20\\ & \mathbf{I} & 57 & 30\\ & 2 & 35 & 00\\ & 3 & 15 & 50\\ & 3 & 59 & 59\\ & 4 & 47 & 28\\ & 5 & 38 & 16\\ & 6 & 32 & 24 \end{array}$	Diff. of Deflection. 10' 50'' 14 10 17 30 20 25 27 30 30 50 34 10 37 30 40 50 44 09 47 29 50 48 54 08
No. of Point. 0 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 11 12 13 14	Deflection from aux. tan. 36' 40'' 27 30 15 00 20 42 30 1° 08 20 1 37 30 2 10 00 2 45 50 3 24 59 4 07 28 4 53 17 5 42 25 6 34 52 7 30 37	Diff. of Deflection. 9' 10" 12 30 15 20 22 30 25 50 29 10 32 30 35 50 39 09 42 29 45 49 49 08 52 27 55 45	No. of Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Deflection from aux. tan. 1° 02' 30" 51 40 37 30 20 00 25 52 30 1 23 20 1 57 30 2 35 00 3 15 50 3 59 59 4 47 28 5 38 16 6 32 24 7 29 50	Diff. of Deflection. 10' 50'' 14 10 17 30 20 25 27 30 30 50 34 10 37 30 40 50 44 09 47 29 50 48 54 08
No. of Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	$\begin{array}{c c} \hline & & \\ \hline \\ \text{Deflection from aux. tan.} \\ \hline \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline$	Diff. of Deflection. 9' 10" 12 30 15 20 22 30 25 50 29 10 32 30 35 50 39 09 42 29 45 49 45 49 45 49 68 52 27	No. of Point. Point. 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16	$\begin{array}{c ccccc} \text{Deflection from}\\ \text{aux. tan.}\\ \hline \mathbf{I}^\circ & \mathbf{02'} & \mathbf{30''}\\ & 5\mathbf{I} & 40\\ & 37 & 30\\ & 20\\ & 00\\ & 25\\ & 52 & 30\\ \mathbf{I} & 23 & 20\\ \mathbf{I} & 57 & 30\\ & 2 & 35 & 00\\ 3 & \mathbf{I} & 57\\ & 3 & 59 & 59\\ 4 & 47 & 28\\ & 5 & 38 & 16\\ & 6 & 32 & 24\\ & 7 & 29 & 50\\ & 8 & 30 & 34\\ \end{array}$	Diff. of Deflection. 10' 50'' 14 10 17 30 20 25 27 30 30 50 34 10 37 30 40 50 44 09 47 29 50 48 54 08 57 26
No. of Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Deflection from aux. tan. 36' 40'' 27 30 15 00 20 42 30 1° 08 20 1 37 30 2 10 00 2 45 50 3 24 59 4 07 28 4 53 17 5 42 25 6 34 52 7 30 37 8 29 40 9, 32 01	Diff. of Deflection. 9' 10'' 12 30 15 20 22 30 25 50 29 10 32 30 35 50 39 09 42 29 45 49 49 08 52 27 55 45 59 03	No. of Point. Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	$\begin{array}{c ccccc} \text{Deflection from}\\ \text{aux. tan.} \\ \hline \mathbf{I}^\circ & \mathbf{02'} & \mathbf{30''} \\ \hline \mathbf{SI} & 40 \\ & 37 & 30 \\ & 20 \\ & 00 \\ & 25 \\ & 52 & 30 \\ & 1 & 23 & 20 \\ \mathbf{I} & 57 & 30 \\ 2 & 35 & 00 \\ 3 & 15 & 50 \\ 3 & 59 & 59 \\ 4 & 47 & 28 \\ 5 & 38 & 16 \\ 6 & 32 & 24 \\ 7 & 29 & 50 \\ 8 & 30 & 34 \\ 9 & 34 & 36 \end{array}$	Diff. of Deflection. 10' 50'' 14 10 17 30 20 25 27 30 30 50 34 10 37 30 40 50 44 50 44 09 47 29 50 48 54 08 57 26 60 44
No. of Point. 0 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	$\begin{array}{c} & & & \\ \hline \\ \text{Deflection from aux. tan.} \\ \hline \\ & & & \text{aux. tan.} \\ \hline \\ & & & aux. tan.$	Diff. of Deflection. 9' 10'' 12 30 15 20 22 30 25 50 29 10 32 30 35 50 39 09 42 29 45 49 45 49 45 49 45 08 52 27 55 45 59 03 62 21 65 36 68 52	No. of Point. Point. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	$\begin{array}{c ccccc} \text{Deflection from}\\ \text{aux. tan.} \\ \hline \mathbf{I}^\circ & \mathbf{02'} & \mathbf{30''} \\ & 51 & 40 \\ & 37 & 30 \\ & 20 \\ & 00 \\ & 25 \\ & 52 & 30 \\ & 1 & 23 & 20 \\ & 1 & 57 & 30 \\ & 2 & 35 & 00 \\ & 3 & 15 & 50 \\ & 3 & 59 & 59 \\ & 4 & 7 & 28 \\ & 5 & 38 & 16 \\ & 6 & 32 & 24 \\ & 7 & 29 & 50 \\ & 8 & 30 & 34 \\ & 9 & 34 & 36 \\ & 10 & 41 & 55 \\ \end{array}$	Diff. of Deflection. 10' 50'' 14 10 17 30 20 25 27 30 30 50 34 10 37 30 40 50 44 09 47 29 50 48 54 08 57 26 60 44 64 02 67 19 70 34
No. of Point. 0 1 2 3 4 4 5 6 6 7 7 8 9 10 11 11 12 13 14 15 16 17	Deflection from aux. tan. 36' 40'' 27 30 15 00 20 42 30 1° 08 20 1 37 30 2 10 00 2 45 50 3 24 59 4 07 28 4 53 17 5 42 25 6 34 52 7 30 37 8 29 40 9, 32 01	Diff. of Deflection. 9' 10'' 12 30 15 20 22 30 25 50 29 10 32 30 35 50 39 09 42 29 45 49 45 08 52 27 55 45 59 03 62 21 65 36	No. of Point. Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	$\begin{array}{c ccccc} \text{Deflection from}\\ \text{aux. tan.} \\ \hline \mathbf{I}^\circ & \mathbf{02'} & \mathbf{30''} \\ \hline \mathbf{SI} & 40 \\ & 37 & 30 \\ & 20 \\ & 00 \\ & 25 \\ & 52 & 30 \\ & 1 & 23 & 20 \\ \mathbf{I} & 57 & 30 \\ 2 & 35 & 00 \\ 3 & 15 & 50 \\ 3 & 59 & 59 \\ 4 & 47 & 28 \\ 5 & 38 & 16 \\ 6 & 32 & 24 \\ 7 & 29 & 50 \\ 8 & 30 & 34 \\ 9 & 34 & 36 \end{array}$	Diff. of Deflection. 10' 50'' 14 10 17 30 20 25 27 30 30 50 34 10 37 30 40 50 44 09 47 29 50 48 54 08 57 26 60 44 64 02 67 19

INST. AT 5. $s = 2^{\circ} 30'$.			INST. AT 6. $s = 3^{\circ} 30'$.		
No. of Point.	Deflection from aux. tan.	Diff. of Deflection.	No. of Point.	Deflection from aux. tan.	Diff. of Deflection.
0 I	I° 35' 00'' I 22 30	12' 30"	0 I	2° 14' 10''	14' 10"
2	I 06 40	15 50	2	2 00 00 I 42 30	17 30
3	47 30	19 10	. 3	I 2I 40	20 50
4	25	22 30	4	57 30	24 10
5	00	25	5	30	27 30
6	30	30	6	00	30
7	1 02 30	32 30	7	35	35
8	I 38 20	35 50	8	I 12.30	37 30,
9	2 17 30	39 10	9	I 53 20	40 50
IO	3 00 00	42 30	IO	. 2 37 30	44 10
II	3 45 50	45 50	II	3 25 00	47 30
12	4 34 59	49 09 52 29	12	4 15 49	50 49
13	5 27 28	55 47	13	5 09 58	54 09, 57 29
14	6 23 15	59 08	1,4	6 07 27	60 48
15	7 22 23	62 25	15	7 08 15	64 06
16	8 24 48	65 43	16	8 12 21	67 25
17	9 30 31	69 01	17	9 19 46	70 42
18	10 39 32	72 16	18	10 30 28	73 59
19	11 51 48	75 32	19	II 44 27	77 14
20	13 07 20	PULSA IS	20	13 01 41	
I	NST. AT 7. s = 4	4° 40'.	Inst. at 8. $s = 6^{\circ} co'$.		
No. of Point.	Deflection from aux. tan.	Diff. of Deflection.	No. of Deflection from Diff. of Deflection		
0	3° 00' 00''	·	0	3° 52' 31"	- 9
I	2 44 10	15' 50"	Í	3 35 00	17' 31"
2	2 25 00	19 10	2	3 14 10	20 50
3	2 02 30	22 30 25 50	3	2 50 00	24 10
4				2 30 00	and the second
	I 36 40	the second se	0.4	2 22 30	27 30
5	I 07 30	29 10	4	2 22 30 I 5I 40	27 30 30 50
56	I 07 30 35	29 IO 32 30	4 5 6	2 22 30 I 5I 40 I 17 30	27 30 30 50 34 10
56	I 07 30 35 00	29 10 32 30 35	4 5 6 7	2 22 30 I 5I 40 I 17 30 40	27 30 30 50 34 10 37 30
56 78	I 07 30 35 00 40	29 IO 32 30 35 40	4 5 6 7 8	2 22 30 I 5I 40 I 17 30 40 00	27 30 30 50 34 10 37 30 40
56 78 9	I 07 30 35 00 40 I 22 30	29 10 32 30 35	4 5 6 7 8 9	2 22 30 I 5I 40 I 17 30 40 00 45	27 30 30 50 34 10 37 30 40 45
5 6 7 8 9 10	I 07 30 35 00 40 I 22 30 2 08 20	29 10 32 30 35 40 42 30	4 5 6 7 8 9 10	2 22 30 I 5I 40 I 17 30 40 00 45 I 32 30	27 30 30 50 34 10 37 30 40
5 6 7 8 9 10 11	I 07 30 35 00 40 I 22 30 2 08 20 2 57 30	29 I0 32 30 35 40 42 30 45 50	4 5 6 7 8 9 10 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 30 30 50 34 10 37 30 40 45 47 30
5 6 7 8 9 10 11 12	I 07 30 35 00 I 22 30 2 08 20 2 57 30 3 50 00	29 10 32 30 35 40 42 30 45 50 49 10	4 5 6 7 8 9 10 11 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 30 30 50 34 10 37 30 40 45 47 30 50 50
5 6 7 8 9 10 11 12 13	I 07 30 35 00 I 22 30 2 08 20 2 57 30 3 50 00 4 45 49	29 10 32 30 35 40 42 30 45 50 49 10 52 30 55 49 59 99	4 5 6 7 8 9 10 11 12 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 30 30 50 34 10 37 30 40 45 47 30 50 50 54 10
5 6 7 8 9 10 11 12 13 14	I 07 30 35 00 40 I 22 30 2 08 20 2 57 30 3 50 00 4 45 49 5 44 58	29 10 32 30 35 40 42 30 45 50 49 10 52 30 55 49 59 09 62 28	4 5 6 7 8 9 10 11 12 13 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5 6 7 8 9 10 11 12 13 14 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29 10 32 30 35 40 42 30 45 50 49 10 52 30 55 49 59 09 62 28 65 48	4 5 6 7 8 9 10 11 12 13 14 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5 6 7 8 9 10 11 12 13 14 15 16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5 6 7 8 9 10 11 12 13 14 15 16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5 6 7 8 9 10 11 12 13 14 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5 6 7 8 9 10 11 12 13 14 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5 6 7 8 9 10 11 12 13 14 15 16 17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5 6 7 8 9 10 11 12 13 14 15 16 17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

54

Inst. at 9. $s = 7^{\circ} 30'$.			INST. AT IO. $s = 9^{\circ}$ 10'.		
No. of Point.	Deflection from aux. tan.,	Diff. of Deflection.	No. of Point.	Deflection from aux. tan.	Diff. of Deflection.
0 I	4° 51' 41" 4 32 31	19' 10''	0 I	5° 57' 32'' 5 36 42	20' 50''
2	· 4 10 01	22 30	2	5 12 31	24 11
3	3 44 10	25 51	3	4 45 01	27 30
4	3 15 00	29 IO 32 30	4	4 14 10	30 51 34 IO
56	2 42 30	35 50	5	3 40 00	37 30
	2 06 40	39 10	6	3 02 30	40 50
78	I 27 30	42 30	78	2 2I 40 I 37 30	44 10
1	45	45	9	I 37 30 50	47 30
9 10	50	50	10	co	50
II	I 42 30	52 30	II	55 00	55
12	2 38 20	55 50	12	I 52 30	57 30 60 50
. 13	3 37 30	59 IO 62 30	13	•2 53 20	60 50 64 10
14	4 40 00	65 49	14	3 57 30	67 30
15	5 45 49	69 08	15	.5 05 00	70 49
16	6 54 57	72 28	16	6 15 49	74 08
17 18	8 07 25 9 23 II	75 46	17 18	7 29 57 8 47 24	77 27
10	9 23 II 10 42 16	79 05	10	10 08 10	80 46
20	12 04 38	82 22	20	II 32 I4	84 04
INST. AT II. $s = 11^{\circ} \infty'$.					
IN	ST. AT II. s = 1	11° 00′.	IN	IST. AT 12. S = 1	3° 00'.
	ST. AT II. $s = 1$ Deflection from aux. tan.			ST. AT 12. $s = 1$ Deflection from aux, tan.	
No. of Point.	Deflection from aux. tan.	Diff. of Deflection.	No. of Point	Deflection from aux. tan.	Diff. of Deflection.
No. of	Deflection from aux. tan. 7° 10' 04''	Diff. of Deflection. 22' 31"	No. of	Deflection from	Diff. of Deflection. 24' II"
No. of Point.	Deflection from aux. tan. 7° 10' 04''	Diff. of Deflection. 22' 31" 25 51	No. of Point O	Deflection from aux. tan. 8° 29' 16"	Diff. of Deflection. 24' II" 27 3I
No. of Point. O I 2	Deflection from aux. tan. 7° 10' 04'' 6 47 33	Diff. of Deflection. 22' 31" 25 51 29 10	No. of Point O I	Deflection from aux. tan. 8° 29' 16'' 8 05 05	Diff. of Deflection. 24' 11'' 27 31 30 51
No. of Point. 0 I 2 3 4	Deflection from aux. tan. 7° 10' 04'' 6 47 33 6 21 42 5 22 32 5 20 01	Diff. of Deflection. 22' 31" 25 51 29 10 32 31	No. of Point 0 I 2 3 4	Deflection from aux. tan. 8° 29' 16'' 8 05 05 7 37 34 7 06 43 6 32 32	Diff. of Deflection. 24' 11" 27 31 30 51 34 11
No. of Point. 0 I 2 3 4	Deflection from aux. tan. 7° 10' 04'' 6 47 33 6 21 42 5 52 32 5 20 01 4 44 10	Diff. of Deflection. 22' 31" 25 51 29 10	No. of Point 0 I 2 3 4	Deflection from aux. tan. 8° 29' 16" 8 05 05 7 37 34 7 06 43 6 32 32 5 55 01	Diff. of Deflection. 24' 11" 27 31 30 51 34 11 37 31
No. of Point. 0 1 2 3 4 5 6	$\begin{array}{c} \text{Deflection from} \\ \text{aux. tan.} \\ \hline \\ $	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51	No. of Point O I 2 3	Deflection from aux. tan. 8° 29' 16'' 8 05 05 7 37 34 7 06 43 6 32 32 5 55 01 5 14 11	Diff. of Deflection. 24' 11" 27 31 30 51 34 11
No. of Point. 0 1 2 3 4 5 6 7	$\begin{array}{c} \text{Deflection from}\\ \text{aux. tan.} \\ \hline \hline 7^\circ 10' 04'' \\ 6 47 33 \\ 6 21 42 \\ 5 52 32 \\ 5 20 01 \\ 4 44 10 \\ 4 05 00 \\ 3 22 30 \end{array}$	Diff. of Deflection. 22' 31" 25 51 20 10 32 31 35 51 39 10	No. of Point 0 I 2 3 4 5 6 7	Deflection from aux. tan. 8° 29' 16'' 8 05 05 7 37 34 7 06 43 6 32 32 5 55 01 5 14 11 4 30 00	Diff. of Deflection. 24' 11" 27 31 30 51 34 11 37 31 40 50
No. of Point. 0 1 2 3 4 5 6 7 8	Deflection from aux. tan. 7° 10' 04'' 6 47 33 6 21 42 5 52 32 5 20 01 4 44 10 4 05 00 3 22 30 2 36 40	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30 45 50 49 10	No. of Point 0 1 2 3 4 5 6 7 8	Deflection from aux, tan. 8° 29' 16'' 8 05 05 7 37 34 7 06 43 6 32 32 5 55 01 5 14 11 4 30 00 3 42 30	Diff. of Deflection. 24' 11" 27 31 30 51 34 11 37 31 40 50 44 11 47 30 50 50
No. of Point. 0 1 2 3 4 5 6 7 8 9	Deflection from aux. tan. 7° 10' 04'' 6 47 33 6 21 42 5 52 32 5 20 01 4 44 10 4 05 00 3 22 30 2 36 40 1 47 30	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30 45 50 49 10 52 30	No. of Point 0 1 2 3 4 5 5 6 7 8 9	Deflection from aux. tan. 8° 29' 16" 8 05 05 7 37 34 7 06 43 6 32 32 5 55 01 5 14 11 4 30 00 3 42 30 2 51 40	Diff. of Deflection. 24' 11" 27 31 30 51 34 11 37 31 40 50 44 11 47 30 50 50 54 10
No. of Point. 0 1 2 3 4 5 6 7 8	Deflection from aux. tan. 7° 10' 04'' 6 47 33 6 21 42 5 52 32 5 20 01 4 44 10 4 05 00 3 22 30 2 36 40	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51 30 10 42 30 45 50 49 10 52 30 55	No. of Point 0 1 2 3 4 5 6 7 8	Deflection from aux. tan. 8° 29' 16'' 8 05 05 7 37 34 7 06 43 6 32 32 5 55 01 5 14 11 4 30 00 3 42 30	Diff. of Deflection. 24' 11" 27 31 30 51 34 11 37 31 40 50 44 11 47 30 50 50 54 10 57 30
No. of Point. 0 1 2 3 4 5 5 6 7 8 9 10	$\begin{array}{c} \text{Deflection from}\\ \text{aux. tan.}\\ \hline \\ \hline$	Diff. of Detection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30 45 50 49 10 52 30 55 60	No. of Point 0 1 2 3 4 5 5 6 7 8 9 10	Deflection from aux. tan. 8° 29' 16" 8 05 05 7 37 34 7 06 43 6 32 32 5 55 01 5 14 11 4 30 00 3 42 30 2 51 40 1 57 30	Diff. of Deflection. 24' 11" 27 31 30 51 34 11 37 31 40 50 44 11 47 30 50 50 54 10 57 30 60
No. of 'Point. 0 1 2 3 4 5 5 6 '7 8 9 10 11	$\begin{array}{c} \text{Deflection from aux. tan.} \\ \hline \hline 7^\circ 10' 04'' \\ 6 47 33 \\ 6 21 42 \\ 5 52 32 \\ 5 20 01 \\ 4 44 10 \\ 4 05 00 \\ 3 22 30 \\ 2 36 40 \\ 1 47 30 \\ 55 \\ 00 \\ \end{array}$	Diff. of Delection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30 45 50 49 10 52 30 55 50 60 62 30	No. of Point 0 I 2 3 3 4 5 6 7 8 9 10 11	Deflection from aux. tan. 8° 29' 16'' 8 05 05 7 37 34 7 06 43 6 32 32 5 55 01 5 14 11 4 30 00 3 42 30 2 51 40 1 57 30 1 00 00	Diff. of Deflection, 24' 11" 27 31 30 51 34 11 37 31 40 50 44 11 47 30 50 50 50 50 54 10 57 30 60 65
No. of 'Point. 0 1 2 3 4 5 5 6 7 8 9 10 11 12	$\begin{array}{c} \text{Deflection from aux. tan.} \\ \hline \hline 7^\circ 10' 04'' \\ 6 47 33 \\ 6 21 42 \\ 5 52 32 \\ 5 20 01 \\ 4 44 10 \\ 4 05 00 \\ 3 22 30 \\ 2 36 40 \\ 1 47 30 \\ 55 \\ 00 \\ 1 00 00 \end{array}$	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30 45 50 49 10 52 30 55 60 62 30 65 50	No. of Point 0 1 2 2 3 4 5 6 7 8 9 10 11 12	Deflection from aux. tan. 8° 29' 16'' 8 05 05 7 37 34 7 06 43 6 32 32 5 55 01 5 14 11 4 30 00 3 42 30 2 51 40 1 57 30 I 00 00 00	Diff. of Deflection. 24' 11" 27 31 30 51 34 11 37 31 40 50 44 11 47 30 50 50 54 10 57 30 60 65 - 67 30
No. of 'Point. 0 I 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15	$\begin{array}{c} \text{Deflection from aux. tan.} \\ \hline \hline 7^\circ 10' 04'' \\ 6 47 33 \\ 6 21 42 \\ 5 52 32 \\ 5 20 01 \\ 4 41 0 \\ 4 05 00 \\ 3 22 30 \\ 2 36 40 \\ 1 47 30 \\ 55 \\ 00 \\ 1 00 00 \\ 2 02 30 \\ 3 08 20 \\ 4 17 30 \\ \end{array}$	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30 45 50 49 10 52 30 55 60 62 30 65 50 69 10	No. of Point 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Deflection from aux. tan. 8° 29' 16'' 8 05 05 7 37 34 7 06 43 6 32 32 5 55 01 5 14 11 4 30 00 3 42 30 2 51 40 1 57 30 I 00 00 \ 00 I 05 00 2 12 30 3 23 20	Diff. of Deflection. 24' 11" 27 31 30 51 34 11 37 31 40 50 14 11 47 30 50 50 54 10 57 30 60 65 - 67 30 70 50
No. of Point. 0 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16	$\begin{array}{c} \text{Deflection from aux. tan.} \\ \hline \hline 7^\circ 10' 04'' \\ 6 47 33 \\ 6 21 42 \\ 5 52 32 \\ 5 20 01 \\ 4 44 10 \\ 4 05 00 \\ 3 22 30 \\ 2 36 40 \\ 1 47 30 \\ 55 \\ 00 \\ 1 00 00 \\ 2 02 30 \\ 3 08 20 \\ 4 17 30 \\ 5 29 59 \end{array}$	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30 45 50 49 10 52 30 55 60 62 30 65 50 69 10 72 30	No. of Point 0 I 2 3 4 5 6 6 7 8 9 10 11 12 I3 14 15 16	Deflection from aux. tan. 8° 29' 16'' 8 05 05 7 37 34 7 06 43 6 32 32 5 55 01 5 14 11 4 30 00 3 42 30 2 51 40 1 57 30 1 00 00 1 05 00 2 12 30 3 23 20 4 37 30	Diff. of Deflection. 24' 11" 27 31 30 51 34 11 37 31 40 50 44 11 47 30 50 50 54 10 57 30 65 - 67 30 70 50 74 10
No. of Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	$\begin{array}{c} \text{Deflection from aux. tan.} \\ \hline \hline 7^\circ 10' 04'' \\ 6 47 33 \\ 6 21 42 \\ 5 52 32 \\ 5 20 01 \\ 4 44 10 \\ 4 05 00 \\ 3 22 30 \\ 2 36 40 \\ 1 47 30 \\ 55 \\ 00 \\ 1 00 00 \\ 2 02 30 \\ 3 08 20 \\ 4 17 30 \\ 5 29 59 \\ 6 45 48 \\ \end{array}$	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30 45 50 49 10 52 30 55 60 62 30 65 50 69 10	No. of Point 0 1 2 3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Deflection from aux. tan. 8° 29' 16" 8 05 05 7 37 34 7 06 43 6 32 32 5 55 01 5 14 11 4 30 00 3 42 30 2 51 40 I 57 30 I 00 00 1 05 00 2 12 30 3 23 20 4 37 30 5 54 59	Diff. of Deflection. 24' 11" 27 31 30 51 34 11 37 31 40 50 14 11 47 30 50 50 54 10 57 30 60 65 - 67 30 70 50
No. of Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	$\begin{array}{c} \text{Deflection from aux. tan.} \\ \hline \hline 7^\circ 10' 04'' \\ 6 47 - 33 \\ 6 21 42 \\ 5 52 32 \\ 5 20 01 \\ 4 44 10 \\ 4 05 00 \\ 3 22 30 \\ 2 36 40 \\ 1 47 30 \\ 55 \\ 00 \\ 1 00 00 \\ 2 02 30 \\ 3 08 20 \\ 4 17 30 \\ 5 29 59 \\ 6 45 48 \\ 8 04 57 \\ \end{array}$	Diff. of Delection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30 45 50 49 10 52 30 55 60 62 30 65 50 69 10 72 30 75 49	No. of Point 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Deflection from aux. tan. 8° 29' 16" 8 05 05 7 37 34 7 06 43 6 32 32 5 55 01 5 14 11 4 30 00 3 42 30 2 51 40 1 57 30 I 00 00 0 00 1 05 00 2 12 30 3 23 20 4 37 30 5 54 59 7 15 48	Diff. of Deflection. 24' 11" 27 31 30 51 34 11 37 31 40 50 44 11 47 30 50 50 54 10 57 30 60 65 - 67 30 70 50 74 10 77 29
No. of Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	$\begin{array}{c} \text{Deflection from aux. tan.} \\ \hline \hline 7^\circ 10' 04'' \\ 6 47 33 \\ 6 21 42 \\ 5 52 32 \\ 5 20 01 \\ 4 44 10 \\ 4 05 00 \\ 3 22 30 \\ 2 36 40 \\ 1 47 30 \\ 55 \\ 00 \\ 1 00 00 \\ 2 02 30 \\ 3 08 20 \\ 4 17 30 \\ 5 29 59 \\ 6 45 48 \\ \end{array}$	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30 45 50 49 10 52 30 55 60 62 30 65 50 69 10 72 30 75 49 79 09	No. of Point 0 1 2 3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Deflection from aux. tan. 8° 29' 16" 8 05 05 7 37 34 7 06 43 6 32 32 5 55 01 5 14 11 4 30 00 3 42 30 2 51 40 I 57 30 I 00 00 1 05 00 2 12 30 3 23 20 4 37 30 5 54 59	Diff. of Deflection. 24' 11" 27 31 30 51 34 11 37 31 40 50 44 11 47 30 50 50 54 10 57 30 60 65 - 67 30 70 50 74 10 77 29 80 49

INST. AT 13. $s = 15^{\circ} 10'$.		Inst. at 14. $s = 17^{\circ} 30'$.				
No. of Point.	Deflection from aux. tan.	Diff. of Deflection.	No. of Point.	Deflection from aux. tan.	Diff. of Deflection.	
0 I	9° 55′ 10″ 9 29 18	25' 52"	0 I	11° 27' 45'' 11 00 13	27' 32"	
2	9 29 18 9 00 06	29 12	2	II 00 I3 I0 29 20	30 53	
3	8 27 35	32 31	- 3	9 55 08	34 12	
4	7 51 44	35 51	4	9 17 36	37 32	
56	7 12 32	39 12	5	8 36 45	40 51	
	6 30 02	42 30 45 51	6	7 52 33	44 I2 47 3I	
78	5 44 II	49 11	7	7 05 02	47 51 50 51	
1 2 C - 1 - 1	4 55 00	52 30	8	6 14 11 .	54 11	
9 10	4 02 30 3 06 40	55 50	9 10	5 20 00	57 30	
II	3 06 40 2 07 30	59 10	II	. 4 22 30 3 21 40 •	60 50	
12	I 05 00	62 30	12	2 17 30	64 10	
13	00	65	13	1 10 00	67 30	
14	I 10 00	70 72 30	14	00	70	
15	2 32 30	75 50	15	I 15 00	75 77 30	
16	3 38 20	79 10	16	2 32 30	80 50	
17 18	4 57 30	82 29	. 17 18	3 53 20	84 10	
10	6 19 59 7 45 48	85 49	10	5 17 30 6 44 59	87 29	
20	9 14 56	89 08	20	8 15 48	90 49	
		co° co'.		ST. AT 16. $s = 2$		
No. of Point.	Deflection from aux. tan.	Diff. of Deflection.	No. of Point.	Deflection from aux. tan.	Diff. of Deflection.	
0	13° 07' 03"	29' 14"	0	14° 53' 03″	30' 54"	
I	12 37 49	32 33	I	14 22 09	30 54 34 15	
2	12 05 16	35 53	2	13 47 54	37 34	
3	11 29 23	39 13	3	13 10 20	40 54	
4	10 50 10 10 07 37	42 33	4	12 29 26 11 45 12	44 14	
56	10 07 37 9 21 45	45 52	56	II 45 I2 IO 57 39	47 33	
	8 32 34	49 11	7	10 06 46	50 53	
78	7 40 02	52 32	8	9 12 34	54 12	
9	6 44 11	55 51 59 10	9	8 15 03	57 31 60 52	
IO	5 45 01	62 31	IO	6 14 11	64 10	
II	4 42 30	65 50	II	6 10 01	67 31	
12	3 36 40	69 10	12 .	5 02 30 3 51 40	70 50	
I3 I4	2 37 30 I 15 00	72 30	13 14	3 51 40 2 37 30	74 10	
14	00	75	14	I 20 00	77 30	
10	I 20 00	80	16	00	80	
17	2 42 30	82 30 85 50	17	I 25 00	85 87 30	
18	4 08 20	89 10	18	2 52 30	90 50	
19	5 37 30	92 29	19	4 23 20	94 IO	
20	20 7 09 59 1 1 20 5 57 30 1					
	56					
· Provide August Aug						

Inst. at 17. $s = 25^{\circ} 30'$.			Inst. at 18. $s = 28^{\circ} 30'$.				
No. of Point.	Deflection from aux. tan.	Diff. of Deflection.	No. of Point.	Deflection from aux. tan.	Diff. of Deflection.		
Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	aux. tan. 16° 45' 48' 16 13 11 15 37 15 14 57 59 14 15 24 13 29 29 12 40 14 11 47 41 10 51 47 9 52 35 8 50 03 7 44 12 6 35 01 5 22 30 4 06 40 2 47 30 1 25 00	32' 37'' 36 56 39 16 42 35 45 55 49 15 52 33 55 54 59 12 62 32 65 51 69 11 72 31 75 50 79 10 82 30	Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	aux. tan. $18^{\circ} 45' 17''$ 18 10 59 17 33 21 16 52 23 16 08 05 15 20 28 14 29 32 13 35 17 12 37 42 11 36 49 10 32 36 9 25 03 8 14 12 7 00 01 5 42 30 4 21 40 2 57 30	34' 18" 37 38 40 58 44 18 47 37 50 56 54 15 57 35 60 53 64 13 67 33 70 51 74 11 77 31 80 50 84 10		
17 18 19 20	00 I. 30 00 3 02 30 4 38 20	85 90 92 30 95 50	17 18 19 20	I 30 00 00 I 35 00 3 I2 30	87 30. 90 95 97 30		
No. of	Deflection from	Diff. of	No. of	Deflection from			
Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	aux, tan. 20° 51' 33" 20 15 32 19 36 11 18 53 31 17 18 12 16 25 33 15 29 36 14 30 20 13 27 44 12 21 50 11 12 36 10 00 04 8 44 12 7 25 01 6 02 30 4 36 40 3 07 30 1 35 00 1 40	Deflection, 36' 01'' 39 21 42 40 46 00 49 19 52 39 55 57 59 16 62 36 65 54 69 14 75 52 79 11 82 31 85 50 89 10 92 30 95 100	Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	aux. tan. 23° $04'$ $36''$ 22 26 52 21 45 48 21 01 25 20 13 42 19 22 40 18 28 19 17 30 39 16 29 40 15 25 23 14 17 46 13 06 51 11 52 37 10 35 04 9 14 12 7 50 01 6 22 30 4 51 40 3 17 30 10 00	Deflection. 37' 44" 41 04 44 23 47 43 51 02 54 21 57 40 60 59 64 17 67 37 70 55 74 14 77 33 80 52 84 11 87 31 90 50 94 10 97 30 100		

TABLE III.

Degree of Curve and Values of the Coordinates x and y, for each Chord-Point of the Spiral for Various Lengths of the Chord.

c. CHORD-LENGTH = 10.						
12.	nc.	Ds.	<i>J</i> '.	x.	Log x.	
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	10 20 30 40 50 60 70 80 100 100 110 120 130 140 150	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10,000 20,000 29,999 39,996 49,990 59,976 69,951 79,907 89,833 99,732 109,578 119,359 129,059 138,655 148,125	0.0145 .0727 .2036 .4363 .7098 1.323 2.035 2.905 4.140 5.589 7.340 9.419 11.853 14.665 17.879	8.162696 8.861664 9.308815 9.639792 9.903002 0.121624 0.308622 0.471991 0.617015 0.747370 0.805712 0.974022 1.073818 1.166281 1.252352	
10 17 18 19 20	160 170 180 190 200	26 54 39 28 37 38 30 21 01 32 04 48 33 49 02 35 33 46	157.439 166.569 175.479 184.132 192.487	21.517 25.598 30.138 35.150 40.645	1.332788 1.408205 1.479112 1.545931 1.609013	

c. CHORD-LENGTH = II.							
12.	nc.	Ds.	у.	x.	Log x.		
I	II	1° 30′ 55″	II.COD	0.0160	8.204089		
2	22	3 01 50	22.000	.0800	8.903057		
3	33	4 32 48	32.999	.2240	9.350208		
4	44	6 03 48	43.996	.4799	9 681185		
56	55	7 34 52	54.989	.8798	9.944394		
6	66	9 06 OI	65.974	1.456	0.163017		
7	77	10 37 16	76.946	2.239	0.350015		
8	88	12 08 37	87.898 -	3.261	0.513384		
9	99	13 40 06	98.822	4.554	0.658408		
10	IIO	I5 II 44	109.706	6.148	0.788763		
II	121	16 43 31	120.536	8.074	0.907104		
12	132	18 15.29	131.295	10.361	1.015415		
13	143	19 47 39	141.965	13.038	1.115210		
14	154	2I 20 0I	152.521	16.131	1.207674		
15	165	22 52 38	162.937	19.667	1.293745		
16	176	24 25 29	173.183	23.669	1.374180		
17	187	25 58 36	183.226	28.158	1.449598		
18	198	27 32 01	193.027	33.152	1.520505		
19	209	29 05 45	202.545	38.665	1.587323		
20	220	30 39 48	211.735	44.710	1.650405		
		32 14 11					
\cdot c. CHORD-LENGTH = 12.							
		. с. СНО	RD-LENGT	°H ≐ 12.			
12.	nc.	· c. CHO	RD-LENGT	$H \doteq 12.$	Log x.		
-11-		Ds. ×	J'.	<i>x</i> .			
I	12	$\frac{D_{s.}}{1^{\circ} 23' 20''}$	<i>J'.</i> 12.000	<i>x</i> .	8.241877		
I 2	12 24	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i>j'.</i> 12.000 24.000	x. 0.0175 .0873	8.241877 8.940845		
I 2 3	12 24 36	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i>J'.</i> 12.000 24.000 35.999	<i>x</i> . 0.0175 .0873 .2443	8.241877 8.940845 9.387997		
I 2 3 4	12 24	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	<i>J'.</i> 12.000 24.000 35.909 47.996	<i>x</i> . 0.0175 .0873 .2443 .5236	8.241877 8.940845 9.387997 9.718974		
I 2 3	12 24 36 48	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	<i>J'.</i> 12.000 24.000 35.999	<i>x</i> . 0.0175 .0873 .2443	8.241877 8.940845 9.387997		
I 2 3 4 5 6	12 24 36 48 60	$\begin{array}{c c} D_{s.} & \\ \hline 1^{\circ} 23' 20'' \\ 2 46 41 \\ 4 10 03 \\ 5 33 28 \\ 6 56 55 \end{array}$	<i>J'.</i> 12.000 24.000 35.909 47.996 59.988	<i>x</i> . 0.0175 .0873 .2443 .5236 .9598	8.241877 8.940845 9.387997 9.718974 9.982183 0.200806		
I 2 3 4	12 24 36 48 60 72	$\begin{array}{c c} D_{s.} & \\ \hline 1^{\circ} 23' 20'' \\ 2 46 41 \\ 4 10 03 \\ 5 33 28 \\ 6 56 55 \\ 8 20 26 \end{array}$	<u>J'.</u> 12.000 24.000 35.999 47.996 59.988 71.971	x. 0.0175 .0873 .2443 .5236 .0598 1.588	8.241877 8.940845 9.387997 9.718974 9.982183 0.2cc8c6 0.387803 0.551172		
I 2 3 4 5 6 7	12 24 36 48 60 72 84	$\begin{array}{c c} D_{s.} & \\ \hline 1^{\circ} 23' 20'' \\ 2 & 46 & 41 \\ 4 & 10 & 03 \\ 5 & 33 & 28 \\ 6 & 56 & 55 \\ 8 & 20 & 26 \\ 9 & 44 & 01 \\ \end{array}$	<i>J'.</i> 12.000 24.000 35.909 47.996 59.988 71.971 83.941	x. 0.0175 .0873 .2443 .5236 .9598 1.588 2.442	8.241877 8.940845 9.387997 9.718974 9.982183 0.200806 0.387803		
I 2 3 4 5 6 7 8	12 24 36 48 60 72 84 96	$\begin{array}{c c} D_{s.} & \\ \hline 1^{\circ} 23^{\circ} 20^{\prime\prime} \\ 2 & 46 & 41 \\ 4 & 10 & 03 \\ 5 & 33 & 28 \\ 6 & 56 & 55 \\ 8 & 20 & 26 \\ 9 & 44 & 01 \\ 11 & 07 & 42 \\ \end{array}$	<i>J'.</i> 12.000 24.000 35.909 47.996 59.988 71.971 83.941 95.889	x. 0.0175 .0873 .2443 .5236 .9598 1.588 2.442 3.558 4.968 6.707	8.241877 8.940845 9.387997 9.718974 9.982183 0.2cc8c6 0.387803 0.551172		
I 2 3 4 5 6 7 8 9	12 24 36 48 60 72 84 96 108	$\begin{array}{c c} D_{s.} & \\ \hline 1^{\circ} 23^{\prime} 20^{\prime\prime} \\ 2 & 46 & 41 \\ 4 & 10 & 03 \\ 5 & 33 & 26 \\ 6 & 56 & 55 \\ 8 & 20 & 26 \\ 9 & 44 & 01 \\ 11 & 07 & 42 \\ 12 & 31 & 28 \\ \end{array}$	<u>J'.</u> 12.000 24.000 35.939 47.996 59.988 71.971 83.941 95.889 107.806	x. 0.0175 .0873 .2443 .5236 .0598 1.588 2.442 3.558 4.968	8.241877 8.940845 9.387997 9.718974 9.982183 0.200806 0.387803 0.551172 0.696196		
I 2 3 4 5 6 7 8 .9 10	12 24 36 48 60 72 84 96 108 120	$\begin{array}{c c} D_{s.} & \\ \hline 1^{\circ} 23^{\circ} 20^{\prime\prime} \\ 2 & 46 & 41 \\ 4 & 10 & 03 \\ 5 & 33 & 28 \\ 6 & 56 & 55 \\ 8 & 20 & 26 \\ 9 & 44 & 01 \\ 11 & 07 & 42 \\ 12 & 31 & 28 \\ 13 & 55 & 21 \\ 15 & 19 & 22 \\ 16 & 43 & 31 \\ \end{array}$	J'. 12.000 24.000 35.909 47.996 59.988 71.971 83.941 95.889 107.806 119.679 131.493 143.231	x. 0.0175 .0873 .2443 .5236 .9598 1.588 2.442 3.558 4.968 6.707	8.241877 8.940845 9.387997 9.718974 9.982183 0.200806 0.387803 0.551172 0.696196 0.826551		
I 2 3 4 5 6 7 8 9 10 11	12 24 36 48 60 72 84 96 108 120 132	$\begin{array}{c c} D_{S.} & \\ \hline 1^{\circ} 23' 20'' \\ 2 & 46 & 41 \\ 4 & 10 & 03 \\ 5 & 33 & 28 \\ 6 & 56 & 55 \\ 8 & 20 & 26 \\ 9 & 44 & 01 \\ 11 & 07 & 42 \\ 12 & 31 & 28 \\ 13 & 55 & 21 \\ 15 & 19 & 22 \\ \end{array}$	J'. 12.000 24.000 35.999 47.996 59.988 71.971 83.941 95.889 107.806 119.679 131.493	x. 0.0175 .0873 .2443 .5236 .9598 1.588 2.442 3.558 4.968 6.707 8.808	8.241877 8.940845 9.387997 9.718974 9.982183 0.200806 0.387803 0.551172 0.696196 0.826551 0.944893		
I 2 3 4 5 6 7 8 9 10 11 12	12 24 36 48 60 72 84 96 108 120 132 144 156 168	$\begin{array}{c c} D_{s.} & \\ \hline 1^{\circ} 23^{\circ} 20^{\prime\prime} \\ 2 & 46 & 41 \\ 4 & 10 & 03 \\ 5 & 33 & 28 \\ 6 & 56 & 55 \\ 8 & 20 & 26 \\ 9 & 44 & 01 \\ 11 & 07 & 42 \\ 12 & 31 & 28 \\ 13 & 55 & 21 \\ 15 & 19 & 22 \\ 16 & 43 & 31 \\ \end{array}$	J'. 12.000 24.000 35.909 47.996 59.988 71.971 83.941 95.889 107.806 119.679 131.493 143.231	x. 0.0175 .0873 .2443 .5236 .9598 1.588 2.442 3.558 4.968 6.707 8.808 11.303 14.223 17.598	$\begin{array}{c} 8.241877\\ 8.940845\\ 9.387997\\ 9.718974\\ 9.982183\\ 0.2cc806\\ 0.387803\\ 0.551172\\ 0.696196\\ 0.826551\\ 0.944893\\ 1.053204 \end{array}$		
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15	12 24 36 48 60 72 84 96 108 120 132 144 156	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	J'. 12.000 24.000 35.909 47.996 59.988 71.971 83.941 95.889 107.806 119.679 131.403 143.231 154.871	x. 0.0175 .0873 .2443 .5236 .0598 1.588 2.442 3.558 4.968 6.707 8.808 11.303 14.223	8.241877 8.940845 9.387997 9.718974 9.982183 0.200806 0.387803 0.551172 0.696196 0.826551 0.944893 1.053204 1.152999 1.245462 1.331533		
I 2 3 4 5 6 7 8 9 10 11 12 13 14	12 24 36 48 60 72 84 96 108 120 132 144 156 168	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	J'. 12.000 24.000 35.909 47.996 59.988 71.971 83.941 95.889 107.806 119.679 131.493 143.231 154.871 166.386 177.749 188.927	x. 0.0175 .0873 .2443 .5236 .9598 1.588 2.442 3.558 4.968 6.707 8.808 11.303 14.223 17.598 21.455 25.821	$\begin{array}{c} 8.241877\\ 8.940845\\ 9.387997\\ 9.718974\\ 9.982183\\ 0.2cc8806\\ 0.387803\\ 0.551172\\ 0.696196\\ 0.826551\\ 0.944893\\ 1.053204\\ 1.152999\\ 1.245462\\ 1.331533\\ 1.411969\\ \end{array}$		
I 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 17	12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204	$\begin{array}{c c} D_{s.} & \\ \hline 1^{\circ} 23' 20'' \\ 2 & 46 & 41 \\ 4 & 10 & 03 \\ 5 & 33 & 28 \\ 6 & 56 & 55 \\ 8 & 20 & 26 \\ 9 & 44 & 01 \\ 11 & 07 & 42 \\ 12 & 31 & 28 \\ 13 & 55 & 21 \\ 15 & 19 & 22 \\ 16 & 43 & 31 \\ 18 & 07 & 48 \\ 19 & 32 & 15 \\ 20 & 56 & 53 \\ \end{array}$	<i>J'.</i> 12.000 24.000 35.999 47.996 59.988 71.971 83.941 95.889 107.866 119.679 131.493 143.231 154.871 166.386 177.749	x. 0.0175 .0873 .2443 .5236 .9598 1.588 2.442 3.558 4.968 6.707 8.868 11.303 14.223 17.598 21.455 25.821 30.718	8.241877 8.940845 9.387997 9.718974 9.982183 0.200806 0.387803 0.551172 0.696196 0.826551 0.944893 1.053204 1.152999 1.245462 1.331533 1.411969 1.487386		
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	12 24 36 60 72 84 96 108 120 132 144 156 168 180 192 204 216	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	J'. 12.000 24.0.0 35.909 47.906 59.988 71.971 83.941 95.889 107.806 119.679 131.493 143.231 154.871 166.386 177.749 188.927 199.883 210.575	x. 0.0175 .0873 .2443 .5236 .0598 1.588 2.442 3.558 4.963 6.707 8.868 11.303 14.223 17.598 21.455 25.821 30.718 36.165	$\begin{array}{c} 8.241877\\ 8.940845\\ 9.387997\\ 9.718974\\ 9.982183\\ 0.200806\\ 0.387803\\ 0.551172\\ 0.696196\\ 0.826551\\ 0.944893\\ 1.053204\\ 1.152999\\ 1.245462\\ 1.331533\\ 1.411969\\ 1.487386\\ 1.558293 \end{array}$		
I 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 17	12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>J'.</i> 12.000 24.0.0 35.999 47.996 59.988 71.971 83.941 95.889 107.806 119.679 131.493 143.231 154.871 156.386 177.749 188.927 199.883 210.575 220.958	x. 0.0175 .0873 .2443 .5236 .9598 1.588 2.442 3.558 4.968 6.707 8.808 11.303 14.223 17.598 21.455 25.821 30.718 30.718 36.765 42.181	$\begin{array}{c} 8.241877\\ 8.940845\\ 9.3^{8}7997\\ 9.718974\\ 9.982183\\ 0.2cc8o6\\ 0.3^{8}7803\\ 0.551172\\ 0.696196\\ 0.826551\\ 0.944893\\ 1.053204\\ 1.152999\\ 1.245462\\ 1.331533\\ 1.411969\\ 1.4^{8}7386\\ 1.558293\\ 1.652513\end{array}$		
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	12 24 36 60 72 84 96 108 120 132 144 156 168 180 192 204 216	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	J'. 12.000 24.0.0 35.909 47.906 59.988 71.971 83.941 95.889 107.806 119.679 131.493 143.231 154.871 166.386 177.749 188.927 199.883 210.575	x. 0.0175 .0873 .2443 .5236 .0598 1.588 2.442 3.558 4.963 6.707 8.868 11.303 14.223 17.598 21.455 25.821 30.718 36.165	$\begin{array}{c} 8.241877\\ 8.940845\\ 9.387997\\ 9.718974\\ 9.982183\\ 0.200806\\ 0.387803\\ 0.551172\\ 0.696196\\ 0.826551\\ 0.944893\\ 1.053204\\ 1.152999\\ 1.245462\\ 1.331533\\ 1.411969\\ 1.487386\\ 1.558293 \end{array}$		

	$\epsilon. CHORD-LENGTH = 13.$					
72.	nc.	Ds.	<i>y</i> .	x.	Log x.	
I	13	1° 16' 55"	13.000	0.0189	8.276630	
2	26	2 33 52	26.000	.0045	8.975607	
3	39	3 50 49	38.999	.2647	9 422759	
4	52	5 07 48	51.995	.5072	9.753736	
56	65	6 24 49	64.987	I.040	0.016945	
6	78	7 41 53	77.969	I.720	0.235568	
7	91	8 59 00	90.936	2.646	0.422565	
8	104	10 16 12	103.879	3.854	0.585934	
9	117	11 33 28	116.789	5.382	0.730959	
01	130	12 50 49	129.652 .	7.266	0.861313	
II	143	14 08 16	142.451	9.542	0.979655	
12	156	15 25 50	155.167	12.245	1.087966	
13	169	16 43 30	167.776	15.409	1.187761	
14	182	1S OI 18	180.252	19.064	1.280224	
15	195	19 19 14	192.562	23.243	1.366295	
16	208	20 37 20	204.671	27.972	1.446731	
17	221	21 55 34	216.540	-33.277	1.522148	
18	234	23 14 00	228.123	39.179	I.593055	
19	247	24 32 35	239.371	45.696	1.659874	
20	260	25 51 23	250.233	52.839	1.722956.	
BAC		27 10 23	11022		Sale and a	
		c. CHO	RD-LENGT	$\Gamma H = 14.$		
11.	nc.	Ds	J'.	<i>x</i> .	Log x.	
I	14	1° 11′ 26″	14.000	0.0204	8.308824	
2	28	2 22 52	28.000	.1018	9.007792	
3	42	3 34 19	41.099	.2851	9.454943	
4	56	4 45 48	55.995	.6108	9.785920	
	70	5 57 18	69.986	I.I20	0.040130	
56	84	. 7 08 51	83.966	1.852	0.267752	
7	98	8 20 26	97.931	2.849	0.454750	
8	II2	9 32 04	111.870	. 4.151	0.618119	
9	126	10 43 47	125 773	5.796	0.763143	
10	140	11 55 33	139.625	7.825	0.893498	
II	154	13 07 24	153.400	10.276	1.011840	
12	168	14 19 20	167.103	13.187	1.120150	
13	182	15 31 22	180.682	16.594	1.219946	
14	196	16 43 29	194.117	20.531	1.312409	
IS	210	17 55 44	207.374	25.03I	1.398480	
16	224	19 66 05	220.415	30.124	1.478915	
17	235	20 20 34	233.196	35.837	1.554333	
18	252	21 33 11	.245.670	42.193	1.625240	
19	266	22 45 56	257.785	49.211	1.692059	
20	280	23 58 51	269.481	56.903	1.755141	
124	1	25 II 55			and the second	

с.	CHORD-	LENGTH = 15.	
----	--------	--------------	--

120	2. CHORD-LENGTH = 15.						
<i>n</i> .	nc.	D _s .	<u>۲</u> .	<i>x</i> .	Log x.		
I	15	1° 06' 40''	15.000	0.0218	8.338787		
2	30	2 13 20	30.000	.1001	9.037755		
3	45	3 20 02	44.998	.3054	9.484907		
4	60	4 26 44	59.994	.6545	9.815884		
5	75	5 33 28	74.984	I.200	0.079093		
6	90	6 40 13	89.964	1.985	0.297716		
7	105	7 47 01	104.926	3.053	0 484713		
8	120	8 53 51	119.861	4.447	0.648082		
9	135	10 00 45	134.757	6.216	0.793107		
IO	150	II 07 4I	149.599	8.384	0 923461		
II	165	I2 I4 4I	164.367	11.010	1.041803		
12	180	13 21 47	179.039	14.129	1.150114		
13	195	14 28 56	193.588	17.779	1.249909		
14	210	15 36 09	207.983	21.997	1.342372		
15	225	16 43 28	222.187	26.819	1.428443		
16	240	17 50 54	236.159	32.276	1.508879		
17	255	18 58 25	249.853	38.397	1.584296		
18	270	20 06 02	263 218	45.207	1.655203		
19	285	21 13 47	276.198	52.726	1.722022		
20	300	22 21 39	288.730	60.968	1.785104		
		23 29 48		et had			
			D I DMG		State of the second		
1		· c. CHO	RD-LENGT	H = 10.			
12.	nc	Ds. N	у.	<i>x</i> .	Log x.		
I	16	1° 02′ 30″	16 000	0.0233	8.366816		
2	32	2 05 00	32.000	.1164	9.065784		
3	48	3 07 31	47.998	.3258	9.512935		
4	64	4 10 03	63.994	.6981	9.843912		
5	80	5 12 36	79.983	1.250	0.107122		
6	96	6 15 11	95.961	2.117	0.325744		
7	II2	7 17 47	111.921	3.256	0.512742		
8	128	8 20 26	127.852	4.744	0.676111		
9	144	9 23 07	143.741	6.624	0 821135		
IO	160	10 25 51	159.572	8.943	0.951490		
II	176	11 28 37	175.325	11.744	1.069832		
12	192	12 31 28	190.975	15.071	1.178142		
13	208	13 34 21	206.494	18.964	1.277938		
14	224	14 37 20	221.848	23.464	1.370401		
15	240	15 40 21	236.999	28.607	1.456472		
16	256	16 43 28	251.903	34.428	1.536907		
17	272	17 46 40	266.510	40.957	1.612325		
18	238	18 49 57	280.766	48.221	1.683232		
19	304	19 53 20	294.611	56.241	1.750051		
20	320	20 56 49	307.979	65.032	1.813133		
	The second	22 00 23	10 31 21 21 21 21	and a start	State of the second		

c. CHORD-LENGTH = 17 .						
12.	nc.	Ds.	J'.	<i>x</i> .	Log x.	
I	17	0° 58′ 49″	17.000	0.0247	8.393145	
2	34	I 57 38	34.000	.1236	9.092113	
3	51	2 56 27	50.998	.3461	9.539264	
4	68	3 55 19	67.994	.7417	9.870241	
4 5 6	85	4 54 12	84.982	1.360	0.133451	
A CONTRACTOR OF	102	5 53 06 .	101.959	2.249	0.352073	
7	119	6 52 00	118.916	3.460	0.539071	
D. C. Labore	136	7 50 57	135.842	5.040	0.702440	
9	153	8 49 55	152.725	7.038	0.847464	
IO	170	9 48 56	169.545	9.502	0.977819	
II	187	10 48 00	186.282	12.478	1.096161	
12	204	II 47 07	202.911	16.013	1.204471	
13	221	12 46 15	219.400	20.150	1.304267	
14	238	13 45 27	235.714	24.930	1.396730	
15	255	14 44 44	251.812	30.395	1.482801	
16	272	15 44 03	267.647	36.579	1.563236	
17	289	16 43 27	283.167	43.516	1.638654	
18	306	17 42 56 18 42 20	298.314	51.234	1.709561	
19	323		313.024	59.756	1.776380	
20	340	19 42 07	327.228	69.097	1.839462	
24	and the states	20 41 49	Children and			
c. CHORD-LENGTH = 18 .						
		c. CHO	RD-LENGT	III = 18.		
12.	nc.	c. CHO	RD-LENGT y.	$\frac{1}{x}$	Log x.	
<i>n</i> . <u>I</u>	<i>nc.</i> 18	Ds.		<i>x</i> .		
	18	Contraction of the second second	<i>y</i> . 18.000	<i>x</i> . 0.0262	8.417968	
I 2	18 36	$D_{s.}$	<i>y</i> . 18.000 36.000	x. 0.0262 .1309	8.417968 9.116937	
I 2 3	18	$\frac{D_{s.}}{\begin{array}{c} 0^{\circ} 55' 33'' \\ 1 51 07 \end{array}}$	<i>y</i> . 18.000	<i>x</i> . 0.0262	8.417968	
I 2 3 4	18 36 54	$\begin{array}{c} D_{s}.\\ \hline 0^{\circ} 55' 33''\\ 1 51 07\\ 2 46 40\\ 3 42 16\\ 4 37 51 \end{array}$	<i>y</i> . 18.000 36.000 53.998	<i>x</i> . 0.0262 .1309 .3665	8.417968 9.116937 9.564088 9.895065 0.158274	
I 2 3 4 5 6	18 36 54 72 90 108	$\begin{array}{c} D_{s}.\\ \hline 0^{\circ} 55^{\prime} 33^{\prime\prime}\\ 1 51 07\\ 2 46 40\\ 3 42 16\\ 4 37 51 \end{array}$	<i>y</i> . 18.000 36.000 53.998 71.993	<i>x</i> . 0.0262 .1309 .3665 .7853 1.440 2.382	8.417968 9.116937 9.564088 9.895065 0.158274 0.376897	
I 2 3 4 5 6 7	18 36 54 72 90	$\begin{array}{c} D_{s},\\ 0^{\circ} 55' 33''\\ 1 51 07\\ 2 46 40\\ 3 42 16\\ 4 37 51\\ 5 33 28\\ 6 29 05 \end{array}$	<i>y</i> . 18.000 36.000 53.998 71.993 89.981	<i>x</i> . 0.0262 .1309 .3665 .7853 1.440	8.417968 9.116937 9.564088 9.895065 0.158274	
I 2 3 4 5 6	18 36 54 72 90 108 126 144	$\begin{array}{c} D_{s},\\ \hline 0^{\circ} 55' 33''\\ 1 51 07\\ 2 46 40\\ 3 42 16\\ 4 37 51\\ 5 33 28\\ 6 29 05\\ 7 24 45 \end{array}$	y. 18.000 36.000 53.998 71.993 80.981 107.957 125.911 143.833	<i>x</i> . 0.0262 .1309 .3665 .7853 1.440 2.382	8.417968 9.116937 9.564088 9.895065 0.158274 0.376897 0.563894 0.727263	
I 2 3 4 5 6 7 8 9	18 36 54 72 90 108 126 144 162	$\begin{array}{c} D_{s}.\\ \hline 0^{\circ} 55' 33''\\ 1 51 07\\ 2 46 40\\ 3 42 16\\ 4 37 51\\ 5 33 28\\ 6 29 05\\ 7 24 45\\ 8 20 26\end{array}$	<i>y</i> . 18.000 36.000 53.998 71.993 89.981 107.957 125.911	x. 0.0262 .1309 .3665 .7853 1.440 2.382 3.663	8.417968 9.116937 9.564088 9.895065 0.158274 0.376897 0.563894 0.727263 0.872288	
I 2 3 4 5 6 7 8 9 10	18 36 54 72 90 108 126 144 162 180	$\begin{array}{c} D_{s},\\ 0^{\circ} 55' 33''\\ 1 51 07\\ 2 46 40\\ 3 42 16\\ 4 37 51\\ 5 33 28\\ 6 29 05\\ 7 24 45\\ 8 20 26\\ 9 16 08 \end{array}$	<i>y</i> . 18.000 36.000 53.998 71.993 89.981 107.957 125.911 143.833 161.708 179.518	x. 0.0262 .1309 .3665 .7853 I.440 2.382 3.663 5.337 7.452 I0.061	8.417968 9.116937 9.564088 9.895065 0.158274 0.376897 0.563894 0.727263 0.872288 1.002643	
I 2 3 4 5 6 7 8 9 10 11	18 36 54 72 90 108 126 144 162 180 198	$\begin{array}{c} D_{s},\\ \hline 0^{\circ} 55' 33''\\ 1 51 07\\ 2 46 40\\ 3 42 16\\ 4 37 51\\ 5 33 28\\ 6 29 05\\ 7 24 45\\ 8 20 26\\ 9 16 08\\ 10 11 54 \end{array}$	<i>y</i> . 18.000 36.000 53.998 71.993 89.981 107.957 125.911 143.833 161.708 179.518 197.240	x. 0,0262 .1309 .3665 .7853 1.440 2.382 3.663 5.337 7.452 10.061 13.212	8.417968 9.116937 9.564088 9.895065 0.158274 0.376897 0.563894 0.727263 0.872288 1.002643 1.120984	
I 2 3 4 5 6 7 8 9 10 11 12	18 36 54 72 90 108 126 144 162 180 198 216	$\begin{array}{c} D_{s},\\ \hline 0^{\circ} 55' 33''\\ 1 51 07\\ 2 46 40\\ 3 42 16\\ 4 37 51\\ 5 33 28\\ 6 29 05\\ 7 24 45\\ 8 20 26\\ 9 16 08\\ 10 11 54\\ 11 07 41 \end{array}$	<i>y</i> . 18.000 36.000 53.998 71.993 89.981 107.957 125.911 143.833 161.708 179.518 197.240 214.847	x. 0.0262 .1309 .3665 .7853 I.440 2.382 3.663 5.337 7.452 I0.061 13.212 16.955	8.417968 9.116937 9.564088 9.895065 0.158274 0.376897 0.563894 0.727263 0.872288 1.002643 1.120984 1.229295	
I 2 3 4 5 6 7 8 9 10 11 12 13	18 36 54 72 90 108 126 144 162 180 198 216 234	$\begin{array}{c} D_{s},\\ \hline 0^{\circ} 55' 33''\\ 1 51 07\\ 2 46 40\\ 3 42 16\\ 4 37 51\\ 5 33 28\\ 6 29 05\\ 7 24 45\\ 8 20 26\\ 9 16 08\\ 10 11 54\\ 11 07 41\\ 12 03 31 \end{array}$	y. 18.000 36.000 53.998 71.993 89.981 107.957 125.911 143.833 161.708 179.518 197.240 214.847 232.366	x. 0.0262 .1309 .3665 .7853 1.440 2.382 3.663 5.337 7.452 10.061 13.212 16.955 21.335	8.417968 9.116937 9.564088 9.895065 0.158274 0.376897 0.563894 0.727263 0.872288 1.002643 1.120984 1.229295 1.329090	
I 2 3 4 5 6 7 8 9 10 11 12 13 14	18 36 54 72 90 108 126 144 162 180 198 216 234 252	$\begin{array}{c} D_{s},\\ \hline 0^{\circ} 55' 33''\\ I 5I 07\\ 2 46 40\\ 3 42 I6\\ 4 37 5I\\ 5 33 28\\ 6 29 05\\ 7 24 45\\ 8 20 26\\ 9 16 08\\ 10 1I 54\\ II 07 4I\\ I2 03 3I\\ 12 59 24 \end{array}$	<i>y</i> . 18.000 36.000 53.998 71.993 89.981 107.957 125.911 143.833 161.708 179.518 197.240 214.847 232.366 249.579	x. 0,0262 .1309 .3665 .7853 1.440 2.382 3.663 5.337 7.452 10.061 13.212 16.955 21.335 26.397	8.417968 9.116937 9.564088 9.895065 0.158274 0.376897 0.563894 0.727263 0.872288 1.002643 1.120984 1.229295 1.329090 1.421554	
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15	18 36 54 72 90 108 126 144 162 180 198 216 234 252 270	$\begin{array}{c} D_{s},\\ \hline 0^{\circ} 55' 33''\\ 1 51 07\\ 2 46 40\\ 3 42 16\\ 4 37 51\\ 5 33 28\\ 6 29 05\\ 7 24 45\\ 8 20 05\\ 7 24 45\\ 8 20 26\\ 9 16 08\\ 10 11 54\\ 11 07 41\\ 12 03 31\\ 12 59 24\\ 13 55 20\\ \end{array}$	<i>y</i> . 18.000 36.000 53.998 71.993 89.981 107.957 125.911 143.833 161.708 179.518 197.240 214.847 232.366 249.579 266.624	x. 0.0262 .1309 .3665 .7853 1.440 2.382 3.663 5.337 7.452 10.061 13.212 16.955 21.335 26.397 32.183	8.417968 9.116937 9.564088 9.895065 0.158274 0.376897 0.563894 0.727263 0.872288 1.002643 1.120984 1.229295 1.329090 1.421554 1.507624	
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288	$\begin{array}{c} D_{s},\\ \hline 0^{\circ} 55' 33''\\ 1 51 07\\ 2 46 40\\ 3 42 16\\ 4 37 51\\ 5 33 28\\ 6 29 05\\ 7 24 45\\ 8 20 26\\ 9 16 08\\ 10 11 54\\ 11 07 41\\ 12 03 31\\ 12 59 24\\ 13 55 20\\ 14 51 18\\ \end{array}$	<i>J</i> . 18.000 36.000 53.998 71.993 89.981 107.957 125.911 143.833 161.708 179.518 179.518 197.240 214.847 232.366 249.579 266.624 283.391	x. 0.0262 .1309 .3665 .7853 1.440 2.382 3.663 5.337 7.452 10.061 13.212 16.955 21.335 26.397 32.183 38.731	$\begin{array}{r} \hline 8.417968\\ 9.116937\\ 9.564088\\ 9.895065\\ 0.158274\\ 0.376897\\ 0.563894\\ 0.727263\\ 0.872288\\ 1.002643\\ 1.120984\\ 1.229295\\ 1.329090\\ 1.421554\\ 1.507624\\ 1.588060\\ \hline \end{array}$	
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 306	$\begin{array}{c} D_{s},\\ \hline 0^{\circ} 55' 33''\\ 1 51 07\\ 2 46 40\\ 3 42 16\\ 4 37 51\\ 5 33 28\\ 6 29 05\\ 7 24 45\\ 8 20 26\\ 9 16 08\\ 10 11 54\\ 11 07 41\\ 12 03 31\\ 12 59 24\\ 13 55 20\\ 14 51 18\\ 15 47 20\\ \end{array}$	<i>y</i> . 18.000 36.000 53.998 71.993 80.981 107.957 125.911 143.833 161.708 179.518 197.240 214.847 232.366 249.579 266.624 283.391 299.824	x. 0.0262 .1309 .3665 .7853 1.440 2.382 3.663 5.337 7.452 10.061 13.212 16.955 21.335 26.397 32.183 38.731 46.076	$\begin{array}{r} \hline 8.417968\\ 9.116937\\ 9.564088\\ 9.895065\\ 0.158274\\ 0.376897\\ 0.563894\\ 0.727263\\ 0.872288\\ 1.002643\\ 1.120984\\ 1.229295\\ 1.329090\\ 1.421554\\ 1.507624\\ 1.588060\\ 1.663477\\ \end{array}$	
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 366 324	$\begin{array}{c} D_{s},\\ \hline 0^{\circ} 55' 33''\\ 1 51 07\\ 2 46 40\\ 3 42 16\\ 4 37 51\\ 5 33 28\\ 6 29 05\\ 7 24 45\\ 8 20 26\\ 9 16 08\\ 10 11 54\\ 11 07 41\\ 12 03 31\\ 12 59 24\\ 13 55 20\\ 14 51 18\\ 15 47 20\\ 16 43 27\\ \end{array}$	J'. 18.000 36.000 53.998 71.993 80.981 107.957 125.911 143.833 161.708 179.518 197.240 214.847 232.366 249.579 266.624 283.391 299.824 315.862	x. 0.0262 .1309 .3665 .7853 1.440 2.382 3.663 5.337 7.452 10.061 13.212 16.955 21.335 26.397 32.183 38.731 46.076 54.248	$\begin{array}{r} \$.417968\\ 9.116937\\ 9.564088\\ 9.895065\\ 0.158274\\ 0.376897\\ 0.563894\\ 0.727263\\ 0.872288\\ 1.002643\\ 1.229295\\ 1.329090\\ 1.421554\\ 1.507624\\ 1.588060\\ 1.663477\\ 1.734385 \end{array}$	
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 283 306 324 342	$\begin{array}{c} D_{s},\\ \hline 0^{\circ} 55' 33''\\ 1 51 07\\ 2 46 40\\ 3 42 16\\ 4 37 51\\ 5 33 28\\ 6 29 05\\ 7 24 45\\ 8 20 26\\ 9 16 08\\ 10 11 54\\ 11 07 41\\ 12 03 31\\ 12 59 24\\ 13 55 20\\ 14 51 18\\ 15 47 20\\ 16 43 27\\ 17 39 37\\ \end{array}$	J'. 18.000 36.000 53.998 71.993 89.981 107.957 125.911 143.833 161.708 179.518 197.240 214.847 232.3c6 249.579 266.624 283.391 299.824 315.862 331.437	x. 0.0262 .1309 .3665 .7853 1.440 2.382 3.663 5.337 7.452 10.061 13.212 16.955 21.335 26.397 32.183 38.731 46.076 54.248 63.271	$\begin{array}{r} \hline 8.417968\\ 9.116937\\ 9.564088\\ 9.895065\\ 0.158274\\ 0.376897\\ 0.563894\\ 0.727263\\ 0.872288\\ 1.002643\\ 1.120984\\ 1.229295\\ 1.329090\\ 1.421554\\ 1.507624\\ 1.588060\\ 1.663477\\ 1.734385\\ 1.801203\\ \end{array}$	
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 366 324	$\begin{array}{c} D_{s},\\ \hline 0^{\circ} 55' 33''\\ 1 51 07\\ 2 46 40\\ 3 42 16\\ 4 37 51\\ 5 33 28\\ 6 29 05\\ 7 24 45\\ 8 20 26\\ 9 16 08\\ 10 11 54\\ 11 07 41\\ 12 03 31\\ 12 59 24\\ 13 55 20\\ 14 51 18\\ 15 47 20\\ 16 43 27\\ \end{array}$	J'. 18.000 36.000 53.998 71.993 80.981 107.957 125.911 143.833 161.708 179.518 197.240 214.847 232.366 249.579 266.624 283.391 299.824 315.862	x. 0.0262 .1309 .3665 .7853 1.440 2.382 3.663 5.337 7.452 10.061 13.212 16.955 21.335 26.397 32.183 38.731 46.076 54.248	$\begin{array}{r} \$.417968\\ 9.116937\\ 9.564088\\ 9.895065\\ 0.158274\\ 0.376897\\ 0.563894\\ 0.727263\\ 0.872288\\ 1.002643\\ 1.229295\\ 1.329090\\ 1.421554\\ 1.507624\\ 1.588060\\ 1.663477\\ 1.734385 \end{array}$	

c. CHORD-LENGTH = 19.					
12.	nc.	Ds.	у.	x.	Log x.
I	10	0° 52' 38"	19.000	0.0276	8.441450
2	38	I 45 I6	38.000	.1382	9.140418
3	57	2 37 54	56.998	.3869	9.587569
4	76	3 30 34	75.993	.8290	9.918546
56	95	4 23 13	94.980	I.520	0.181755
	114	5 15 54	113.954	2.514	0.400378
7	133	6 08 36	132.906	3.867	0.587376
8	152	7 OI 19	151.824	5.633	0.750744
9	171	7 54 03	170.692	7.866	0.895769
IO	190	8 46 49	189.491	10.620	1.026124
II	209	9 39 36	208.198	13.947	1.144465
12	228	10 32 26	226.783	17.897	1.252776
13	247	11 25 18 12 18 12	245.212	22.520 27.863	1.352571
14	266 285	and the second	263.445 281.437	33.971	1.445035
15 16	-	13 II 09		40.883	1.531105
	304	I4 04 09 I4 57 II	299.135 316.481	48.636	1.686958
17 18	323 342	14 57 11 15 50 16	333.410	57.262	1.757866
10	361	16 43 25	349.851	66.786	1.824684
20	380	17 36 38	365.725	77.226	1.887766
20	300	18 29 54	303.725	11.220	1.00//00
	12.02	10 29 54	Star Plant		
		· c. CHOI	RD-LENGT	H = 20.	
12.	nc.	Ds.	у.	<i>x</i> .	Log x.
I	20	0° 50' 00''	20.000	0.0291	8.463726
2	40	I 40 00	40.000	.1454	9.162694
3	60	2 30 OI	59.998	.4072	9.609845
4	80	3 20 02	79.993	.8726	9.940822
5	100	4 10 03	99.979	1.600	0.204032
6	120	5 00 05	TTOOTO		
1 100	Contra Para	5 00 05	119.952	2.646	0.422654
7	140	5 50 08	139.901	4.071	0.609652
8	160	5 50 08 6 40 13	139.901 159.815	4.071 5.930	0.609652 0.773021
8	160 180	5 50 08 6 40 13 7 30 18	139.901 159.815 179.676	4.071 5.930 8.280	0.609652 0.773021 0.918045
8 9 10	160 180 200	5 50 08 6 40 13 7 30 18 8 20 26	139.901 159.815 179.676 199.465	4.071 5.930 8.280 11.179	0.609652 0.773021 0.918045 1.048400
8 9 10 11	160 180 200 220	5 50 08 6 40 13 7 30 18 8 20 26 9 10 34	139.901 159.815 179.676 199.465 219.156	4.071 5.930 8.280 11.179 14.681	0.609652 0.773021 0.918045 1.048400 1.166742
8 9 10 11 12	160 180 200 220 240	5 50 08 6 40 13 7 30 18 8 20 26 9 10 34 10 00 44	139.901 159.815 179.676 199.465 219.156 238.719	4.071 5.930 8.280 11.179 14.681 18.839	0.609652 0.773021 0.918045 1.048400 1.166742 1.275052
8 9 10 11 12 13	160 180 200 220 240 260	5 50 08 6 40 13 7 30 18 8 20 26 9 10 34 10 00 44 10 50 56	139.901 159.815 179.676 199.465 219.156 238.719 258.118	4.071 5.930 8.280 11.179 14.681 18.839 23.705	0.609652 0.773021 0.918045 1.048400 1.166742 1.275052 1.374848
8 9 10 11 12 13 14	160 180 200 220 240 260 280	5 50 08 6 40 13 7 30 18 8 20 26 9 10 34 10 00 44 10 50 56 11 41 10	139.901 159.815 179.676 199.465 219.156 238.719 258.118 277.310	4.071 5.930 8.280 11.179 14.681 18.839 23.705 29.330	0.609652 0.773021 0.918045 1.048400 1.166742 1.275052 1.374848 1.467311
8 9 10 11 12 13 14 15	160 180 200 220 240 260 280 300	5 50 08 6 40 13 7 30 18 8 20 26 9 10 34 10 00 44 10 50 56 11 41 10 12 31 26	139.901 159.815 179.676 199.465 219.156 238.719 258.118 277.310 296.249	4.071 5.930 8.280 11.179 14.681 18.839 23.705 29.330 35.759	0.609652 0.773021 0.918045 1.048400 1.166742 1.275052 1.374848 1.467311 1.553382
8 9 10 11 12 13 14 15 16	160 180 200 220 240 260 280 300 320	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	139.901 159.815 179.676 199.465 219.156 238.719 258.118 277.310 296.249 314.879	4.071 5.930 8.280 11.179 14.681 18.839 23.705 29.330 35.759 43.035	0.609652 0.773021 0.918045 1.048400 1.166742 1.275052 1.374848 1.467311 1.553382 1.633817
8 9 10 11 12 13 14 15 16 17	160 180 200 220 240 260 280 300 320 340	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	130.901 159.815 179.676 199.465 219.156 238.719 258.118 277.310 296.249 314.879 333.138	4.071 5.930 8.280 11.179 14.681 18.839 23.705 29.330 35.759 43.035 51.196	0.609652 0.773021 0.918045 1.048400 1.166742 1.275052 1.374848 1.467311 1.553382 1.633817 1.7C9235
8 9 10 11 12 13 14 15 16 17 18	160 180 200 220 240 260 280 300 320 340 360	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	139.901 159.815 179.676 199.465 219.156 238.719 258.118 277.310 296.249 314.879 333.138 350.958	4.071 5.930 8.280 11.179 14.681 18.839 23.705 29.330 35.759 43.035 51.196 60.276	0.609652 0.773021 0.918045 1.048400 1.166742 1.275052 1.374848 1.467311 1.553382 1.633817 1.7C9235 1.780142
8 9 10 11 12 13 14 15 16 17 18 19	160 180 200 220 240 260 280 300 320 320 340 360 380	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	130.901 159.815 179.676 199.465 219.156 238.719 258.118 277.310 296.249 314.879 333.138 350.958 368.264	4.071 5.030 8.280 11.179 14.681 18.839 23.705 29.330 35.759 43.035 51.196 60.276 70.301	0.609652 0.773021 0.918045 1.048400 1.166742 1.275052 1.374848 1.467311 1.553382 1.633817 1.7C9235
8 9 10 11 12 13 14 15 16 17 18	160 180 200 220 240 260 280 300 320 340 360	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	139.901 159.815 179.676 199.465 219.156 238.719 258.118 277.310 296.249 314.879 333.138 350.958	4.071 5.930 8.280 11.179 14.681 18.839 23.705 29.330 35.759 43.035 51.196 60.276	0.609652 0.773021 0.918045 1.048400 1.166742 1.275052 1.374848 1.467311 1.553382 1.633817 1.7C9235 1.780142 1.846961

63

c. CHORD-LENGTH = 21 .					
п.	nc.	Ds.	<i>J</i> ¥.	x.	Log. x.
I	21	0° 47′ 37″	21.000	0.0305	8.484915
2	42	I 35.14	42.000	.1527	9.183883
3	63	2 22 52	62.998	.4276	9.631035
4	84	3 10 30	83.992	.9162	9.962012
56	105	3 58 08	104.978	1.680	0.225221
6	126	4 45 47.	125.949	2.779	0.443844
7	147	5 33 27 6 21 08	146.896	4.274	0.630841
8	168	and the second se	167.805	6.226	0.794210
9	189	7 08 50	188.660	8.694	0.939235
TO	210	7 56 33	209.438	11.738	1.069589
II	231	8 44 18	230.114	15.415	1.187931
12	252	9 32 03	250.655	19.781	1.296242
13	273	10 19 51	271.023	24.891	1.396037
14	294	II 07 40	291.176	30.796	1.488500
15	315	11 55 31	311.062	37.547	1.574571
16	336	12 43.24	330.623	45.186	1.655007
17	357	13 31 20	349.795	53.756	1.730424
18	378	14 19 17	368.506	63.289	1.801331
19	399	15 07 17	386.677	73.816	1.868150
State of		15 55 19			and the second second
		c. CHO	RD-LENGT	H = 22.	11.467
12.	nc.	Ds.	у.	<i>x</i> .	Log. x.
Í	22	45' 27"	22.000	0.0320 .	8.505110
2	44	1° 30 53	44.000	.1600	0 204087
3	66	2 16 22	65.998	.4480	9.651238
4	88	3 01 50	87.992	.9599	9.982215
	IIO	3 47 18	109.977	1.760	0.245424
56	132	4 32 48	131.947	2.911	0.464047
78	154	5 18 18	153.891	4.478	0.651045
8	176	6 03 48	175.796	6.522	0.814414
9	198	6 49 19	197.643	9.108	0.959438
10	220	7 34 51	219.411	12.297	1.089793
II	242	8 20 25	241.071	16.149	1.208134
12	264	9 06 00	262.591	20.733	1.316445
13	286	9 51 36	283.929	26.076	1.416240
14	308	10 37 13	305.042	32.263	1.508704
15	330	II 22 53	325.874	39.335	I.594775
16	352	12 08 34	346.367	47.338	1.675210
17	374	12 54 16	366.451	56.315	1.750623
18	396	13 40 01	386.054	66.303	1.821535
129-12		14 25 49		2 2 3 X	

6.4

CHORD-LENGTH = 23.

1. CHORD-LENGTH = 23.						
12.	nc.	Ds.	у.	<i>x</i> .	Log. x.	
I	23	0° 43′ 29″	23.000	0.0335	8.524424	
23	46 69	1 26 58 2 10 26	46.000 68.998	.1673 .4683	9.223392 9.670543	
4 5	92 115	2 53 56 3 37 26	91.991 114.976	1.004 .1.840	0.001520 0.264729	
6	138 161	4 20 56	137.945 160.886	3.043 4.681	0.483352	
78	184	5 47 58	. 183.787	6.819	0.670350 0.833719	
9 10	207 230	6 31 30 7 15 04	206.627 229.384	9.522 12.856	0.978743 1.109098	
11 12	253 276	7 58 38 8 42 13	252.029	16.883	1.227439 1.335750	
13	299	9 25 49	296.835 318.907	27.261	1.435545	
14 15	322 345	10 09 27 10 53 06	340.686	33.729 41.123	1.528009 1.614080	
16 17	368 391	11 36 47 12 20 29	362.110 383.108	49.490 58.875	1.694515 1.769933	
		13 04 13				

c. CHQRD-LENGTH = 24.

	and the second	and the second	the second second	and the second second	
12.	nc.	Ds.	<i>y</i> .	x.	Log. x.
I	24	41' 40'' 1° 23 20	24.000	0.0349	8.542907
23	48 72	1°23 20 2 05 00	48.000	.1745 .4887	9.241875 9.689027
4	96	2 46 41	95.991	1.047	0.020004
56	120 144	3 28 22 4 10 03	119.975 143.942	1.920 3.176	0.283213 0.501836
78	168	4 51 45	167.881	4.885	0.688833
9	192 216	5 33 28 6 15 10	191.777 215.611	7.115 9.936	0.852202 0.997226
IO II.	240 264	6 · 56 54 . 7 38 39	239.358 262.987	13.415 17.617	1.127581
11.	288	7 38 39 8 20 25	286.463	22.607	1.245923 1.354234
13	312 336	9 [°] 02 12 9 44 00	309.741 332.773	28.446	1.454029 1.546492
14 15	360	10 25 48	355-499	42.910	1.632563
16 17	384 408	II 07 30 II 40 3I	377.854 399.765	51.641 61.435	1.712999 1.788416
1/	400	12 31 25	399.705	01.435	1.700410

	c. CHORD-LENGTH = 25.						
12.	nc.	D _s .	у.	x.	Log. x.		
I	25	0° 40' 00''	25.000	0.0364	8.560636		
2	50	I 20 CO	50.000	.1818	9.259604		
3	75	2 00 00	74.997	.5090	9.706755		
4	100	2 40 OI	99.99I	1.001	0.037732		
56	125	3 20 02	124.974	2.000	0.300942		
6	150	4 00 03	149.940	3.308	0.519564		
.7	175	4 40 04	174.876.	5.088	0.706562		
8	200	5 20 05	199.768	7.412	0.869931		
9	225	6 00 09	224.595	10.350	1.014955		
IO	250	6 40 13	249.331	13.974	I.145310		
II	275	7 20 17	273.945	18.351	1.263652		
12	300	8 00 22	298.398	23.548	1.371962		
13	325	8 40 28	322.647	29.632	I.471758		
14	350	9 20 35	346.638	36.662	1.564221		
15	375	10 00 43	370.311	44.698	1.650292		
16	400	10 40 52	393.598	53.793	I.730727		
	a mark	11 21 03					

c. CHORD-LENGTH = 26.

n.	nc.	Ds.	у.	x.	Log. x.
I	26	0° 38' 28''	26.000	0.0378	8.577669
2	52	I 16 56	52.000	.1891	9.276637
3	78	I 55 24	77.997	.5294	9.723789
4	104	2 33 52	103.990	I.I34	0.054766
5	130	3 12 20	129.973	2.080	0.317975
6	156	3 50 48	155.937	3.440	0.536598
7	182	4 29 18	181.871	5.292	0.723595
8	208	5 07 48	207.759	7.708	0.886964
9	234	5 46 18	233.579	10.764	1.031989
IO	260	6 24 48	259.304	14.533	1.162343
II	286	7 03 20	284.903	19.085	1.280685
12	312	7 41 52	310.334	24.490	1.388996
13	338	8 20 25	335-553	30.817	1.488791
14	364	8 58 59	360.504	38.129	1.581254
15	390	9 37 33	385.124	46.486	1.667325
1	C. Start	10 16 00			

	c. CHORD-LENGTH = 27 .							
n.	nc.	Ds.	. بر	<i>x</i> .	Log. x.			
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15	27 54 81 108 135 162 216 243 270 297 324 351 378 405	$\begin{array}{c} 0^{\circ} \ 37^{\prime} \ 02^{\prime\prime} \\ 1 \ 14 \ 04 \\ 1 \ 51 \ 07 \\ 2 \ 28 \ 10 \\ 3 \ 05 \ 12 \\ 3 \ 42 \ 15 \\ 4 \ 19 \ 19 \\ 4 \ 56 \ 23 \\ 5 \ 33 \ 28 \\ 6 \ 10 \ 32 \\ 6 \ 47 \ 38 \\ 7 \ 24 \ 44 \\ 8 \ 01 \ 51 \\ 8 \ 38 \ 59 \\ 9 \ 16 \ 07 \\ 9 \ 53 \ 16 \end{array}$	$\begin{array}{c} 27.000\\ 54.000\\ 80.997\\ 107.990\\ 134.972\\ 161.935\\ 188.866\\ 215.750\\ 242.562\\ 269.277\\ 295.860\\ 322.270\\ 348.459\\ 374.369\\ 399.936\\ \end{array}$	0.0393 .1963 .5498 1.178 2.160 3.573 5.495 8.005 11.178 15.092 19.819 25.432 32.002 39.595 48.274	8.594060 9.293028 9.740179 0.071156 0.334365 0.552988 0.739986 0.903355 1.048379 1.178734 1.297075 1.405386 1.505181 1.597645 1.683716			

c. CHORD-LENGTH = 28.

п.	nc.	D [*] s.	у.	x.	Log. x.
I	28	$\begin{array}{c} 0^{\circ} \ 35' \ 42'' \\ 1 \ 11 \ 26 \\ 1 \ 47 \ 08 \\ 2 \ 22 \ 52 \\ 2 \ 58 \ 36 \\ 3 \ 34 \ 19 \\ 4 \ 10 \ 03 \\ 4 \ 45 \ 48 \\ 5 \ 21 \ 32 \\ 5 \ 57 \ 17 \\ 6 \ 33 \ 03 \\ 7 \ 08 \ 50 \\ 7 \ 44 \ 36 \\ 8 \ 20 \ 24 \\ 8 \ 56 \ 13 \end{array}$	28.000	0.0407	8.609854
2	56		55.999	.2036	9.308822
3	84		83.997	.5701	9.755973
4	112		111.990	1.222	0.086950
5	140		139.971	2.240	0.350160
6	168		167.933	3.705	0.568782
-7	196		195.862	5.609	0.755780
8	224		223.740	8.301	0.919149
9	252		251.546	11.592	1.064173
10	280		279.251	15.650	1.194528
11	308		306.818	20.553	1.312870
12	336		334.206	26.374	1.421180
13	364		361.365	33.188	1.520976
14	392		388.235	41.062	1.613439

67

1254		AB/22-2-24		The second s	ALL DE LE
n.	nc.	Ds.	<i>y</i> .	x.	Log. x.
I 2 3 4 5 6 7 8 9 10 11 12 13 14	29 58 87 116 145 174 203 232 261 290 319 348 377 406	$\begin{array}{c} 0^{\circ} 34' 29'' \\ 1 & 08 & 58 \\ 1 & 43 & 27 \\ 2 & 17 & 56 \\ 2 & 52 & 26 \\ 3 & 26 & 55 \\ 4 & 01 & 26 \\ 4 & 35 & 56 \\ 5 & 10 & 26 \\ 4 & 35 & 56 \\ 5 & 10 & 26 \\ 5 & 44 & 57 \\ 6 & 19 & 29 \\ 6 & 54 & 01 \\ 7 & 28 & 34 \\ 8 & 03 & 07 \\ 8 & 27 & 10 \\ \end{array}$	29,000 57,999 86,997 115,989 144,970 173,930 202,857 231,731 260,530 289,224 317,776 346,142 374,271 402,100	0.0422 .2109 .5905 1.265 2.320 3.837 5.902 8.598 12.006 16.209 21.287 27.316 34.373 42.528	8.625094 9.324062 9.771213 0.102190 0.365400 0.584022 0.771020 0.934389 1.079413 1.209768 1.328110 1.436420 1.536216 1.628679
	1.00	8 37 40		4.5-5	

c. CHORD-LENGTH = 29.

c. CHORD-LENGTH = 30.

		and the second s			
п.	nc.	Ds.	<i>y</i> .	x.	Log. x.
175				The second second	
I	30	0° 33′ 20″	30.000	0.0436	8.639817
2	60	I 06 40	59.999	.2182	9.338785
3	90	I 40 00	89.997	.6108	9.785937
4	120	2 13 20	119.989	1.309	0.116914
5	150	2 46 41	149.969	2.400	0.380123
6	180	3 20 02	179.928	3.970	0.598746
7	210	3 53 22	209.852	6.106	0.785743
8	240	4 26 44	239.722	8.894	0.949112
9	270	5 00 05	269.514	12.420	1.094137
IO	300	5 33 27	299.197	16.768	I.22449I
II	330	6 06 49	328.734	22.02I	1.342833
12	360	6 40 12	358.078	28.258	1.451144
13	390	7 13 36	387.176	35.558	1.550939
		7 47 00			

Y

LIFORNIA

A

	- And		in the second second	ALL	
n.	nc.	L _s .	у.	x.	Log x.
I 2 3 4 5 6 7 8 9 10 11 12	31 62 93 124 155 186 217 248 279 310 341 372	$\begin{array}{c} 0^{\circ} \ 32' \ 15'' \\ 1 \ 04 \ 31 \\ 1 \ 36 \ 47 \\ 2 \ 09 \ 62 \\ 2 \ 41 \ 18 \\ 3 \ 13 \ 34' \\ 3 \ 45 \ 50 \\ 4 \ 18 \ 07 \\ 4 \ 50 \ 24 \\ 5 \ 54 \ 59 \\ 6 \ 27 \ 17 \end{array}$	31.000 61.999 92.997 123.988 154.968 185.925 216.847 247.713 278.498 309.170 339.692 370.014	0.0451 .2254 .6312 1.353 2.479 4.102 6.309 9.191 12.834 17.327 22.755 29.200	8.654058 9.353026 9.800177 0.131154 0.394363 0.612986 0.799984 0.963353 1.108377 1.238732 1.357073 1.465384
13	403	6 59 35 7 31 53	400.082	36.743	1.565179

c. CHORD-LENGTH =

CHORD-LENGTH = 32.

		and the second se			
<i>n</i> .	nc.	<i>Ds</i> .	у.	<i>x.</i>	Log x.
I	32	0° 31' 15"	32.000	0.0465	8.667846
2	64	I 02 30	63 999	.2327	9.366814
3	96	1 33 45	95.997	.6516	9.813965
4	128	2 05 00	127.988	1.396	0.144942
5	160	2 36 16	159.967	2.559	0.408152
6	192	3 07 31	101.023	4.234	0.626774
- 7	224	3 38 47	223.842	6.513	0.813772
8	256	4 10 03	255.703	9.487	0.977141
9	288	4 41 19	287.481	13.248	1.122165
IO	320	5 12 36	319.144	17.886	1.252520
II	352	5 43 53	350.649	23.489	1.370802
12	384	6 15 10	381.950	30.142	1.479172
13	416	6 46 28	412.988	37.929	1.578968
	1.0	7 17 46		51 5- 5	

n.	nc.	Ds.	у.	. <i>x</i> .	Log. x.
I 2	33 66	0° 30' 19'' 1 00 36	33.000 65.999	0.0480	8.681210 9.380178
34	99 132	I 30 55 2 0I I3	98.997 131.988	.6719 1.440	9.827329 0.158306
56	165 198	2 31 32 3 0I 50	164.966 197.921	2.639	0.421516
78	23I 264	3 32 09 4 02 28	230.837	6.716 9.784	0.827136
9	297 330	4 32 48 5 03 07	296.465	13.662 18.445	1.135529 1.265884
II I2	363 396	5 33 27 6 03 47	361.607 393.886	24.223 31.084	1.384226 1.492536
	-	6 34 07	102520 555555	11.21	

c. CHORD-LENGTH = 33.

c. CHORD-LENGTH = 34.

		Carlo and and a second			
п.	nc.	Ds.	j'.	х.	Log. x.
I 2 3 4 5 6 7 8 9 10 11 11 12	34 68 102 136 170 204 238 272 306 340 374 408	$\begin{array}{c} 0^{\circ} 29' \ 25'' \\ 0 \ 58 \ 49 \\ 1 \ 28 \ 14 \\ 1 \ 57 \ 39 \\ 2 \ 27 \ 04 \\ 2 \ 56 \ 29 \\ 3 \ 25 \ 55 \\ 3 \ 55 \ 20 \\ 4 \ 24 \ 46 \\ 4 \ 54 \ 12 \\ 5 \ 23 \ 38 \\ 5 \ 53 \ 05 \end{array}$	34.000 67.999 101.996 135.987 169.965 203.918 237.832 271.685 305.449 339.090 372.565 405.822	0.0495 .2473 .6923 1.483 2.719 4.499 6.920 10.080 14.076 19.004 24.957 32.026	8.694175 9.393143 9.840294 0.171271 0.434481 0.653103 0.840101 1.003470 1.148494 1.278849 1.397191 1.505501
12	400	5 53 05 6 22 JI	405.022	, ,	1.505501

-					
п.	nc.	Ds.	<i>y</i> .	<i>x</i> .	Log x.
I	35	0° 28′ 34″	35.000	0.0509	8.706764
2	70	0 57 09 .	69.999	.2545	9.405732
3	105	I 25 43	104.996	.7127	9.852883
4	140	I 54 17.	139.987	1.527	0.183860
5	175	2 22 52	174.964	2.799	0.447070
6	210	2 51 27	209.916	4.631	0.665692
7	245	3 20 01	244.827	7.123	0.852690
8	280	3 48 36	279.675	10.377	1.016059
9	315	4 17 12	314.433	14.490	1.161083
IO	350	4 45 47	349.063	19.563	1.291438
II	385	5 14 23	383.523	25.691	1.409780
12	420	5 43 00	417.758	32.968	1.518090
		6 09 36	and the second	at a state	

c. CHORD-LENGTH = 35.

c. CHORD-LENGTH = 36.

		NAME ZOR	Carrow Carrow	8	A Contraction
11.	nc.	Ds.	у.	x.	Log x.
I 2 3 4 5 6 7 8 9 10	36 72 103 144 180 216 252 2:8 324 360	$\begin{array}{c} 0^{\circ} \ 27' \ 47' \\ 0 \ 55 \ 33 \\ 1 \ 23 \ 20 \\ 1 \ 51 \ 07 \\ 2 \ 18 \ 54 \\ 2 \ 46 \ 41 \\ 3 \ 14 \ 28 \\ 3 \ 42 \ 15 \\ 4 \ 10 \ 03 \\ 4 \ 27 \ 54 \end{array}$	36.000 71.999 107.996 143.987 179.963 215.913 251.822 287.666 323.417	0.0524 .2018 .7330 1.571 2.879 4.764 7.327 10.673 14.905 20.122	8.718998 9.417967 9.865118 0.196095 0.459304 0.677927 0.864924 1.028293 1.173318 1.303673
II	396	4 37 51 5 05 39 5 33 27	359.037 394.480	26.425	1.303073

		States - Marry - Marrie - Marrie			
11.	nc.	Ds.	<i>j</i> ′.	х.	Log x.
I 2 3 4 5 6 7 8 9 10 11	37 74 111 148 185 222 259 296 333 370 407	$\begin{array}{c} 0^{\circ} \ 27^{\prime} \ 02^{\prime\prime} \\ 0 \ 54 \ 03 \\ 1 \ 21 \ 05 \\ 1 \ 48 \ 07 \\ 2 \ 15 \ 09 \\ 2 \ 42 \ 11 \\ 3 \ 09 \ 13 \\ 3 \ 36 \ 15 \\ 4 \ 03 \ 17 \\ 4 \ 30 \ 20 \\ 4 \ 57 \ 23 \\ 5 \ 24 \ 26 \end{array}$	37.000 73.999 110.996 147.986 184.962 221.911 258.817 295.657 332.400 369.010 405.438	0.0538 .2691 .7534 1.614 2.059 4.896 7.530 10.970 15.319 20.681 27.159	8.730898 9.429866 9.877017 0.207994 0.471203 0.689826 0.876824 1.040193 1.185217 1.315572 1.433913

c. CHORD-LENGTH = 37.

.c. CHORD-LENGTH = 38.

					1
12.	nc.	Ds.	<i>y</i> .	x.	Log x.
I	38	0° 26' 19"	38.000	0.0553	8.742480
2	76	0 52 39	75.999	.2763	9.441448
3	114	I 18 57	113.996	.7737	9.888599
4	152	I 45 I6	151.986	1.658	0.219576
5	190	2 II 35	189.961	3.039	0.482785
6	228	2 37 54	227.909	5.028	0.701408
7	266	3 04 14	265.812	7.734	0.888406
8	304	3 30 33	303.648	11.266	1.051774
9	342	3 56 53	341.384	15.733	1.196799
IO	380	4 23 13	378.983	21.240	1.327154
II	418	4 49 33	416.396	27.893	1.445495
1.2	1. 2. F. 1.	5 15 53	NEW STREET	Carl Strate	T. S. Variation
5					The Ball

n $n.$ $D_s.$ $y.$ $x.$ $Log x.$ 1 39 $o^{\circ} 25' 38''$ 39.000 0.0567 8.753761 2 78 $o 5117$ 77.999 $.2836$ 9.452729 3 117 1 16 55 116.996 $.7941$ 9.899850 4 156 1.42 34 155.985 1.702 0.230857 5 195 2.08 13 194.960 3.119 0.494066 6 234 2.33 51 233.906 5.160 0.712689 7 273 2.59 30 272.807 7.938 0.899687 8 312 3.25 09 311.633 10.63055 16.147 1.208080 10 300 4 16.28 388.956 21.799 1.338435 t t t t t $Log x.$ $1 40 0^{\circ\circ} 25' oo'. 40.000 0.0582 8.764756 2 50 oot 19.9996$	-	and and the second				Law and the same			
I 39 0° 25' 38'' 39.000 2.836 3.753761 9.452729 0.230857 0.494066 0.712689		c. CHORD-LENGTH = 39 .							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	п.	nc.	D_s .	y.	<i>x</i> .	Log x.			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I	30	0° 25' 38''	30.000	0.0567	8.753761			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1								
4 156 I 42 34 155.9§5 1.702 0.230857 5 195 2 08 13 194.960 3.119 0.494066 6 234 2 33 51 233.906 5.160 0.712689 7 273 2 59 30 272.807 7.938 0.899687 9 351 3 50 48 350.368 16.147 1.208080 10 390 4 16 28 388.956 21.799 1.338435 1 40 0° 25' 00' 40.000 0.0582 8.764756 2 80 0 50<00 79.999 .2909 9.463724 3 120 I 15<00 119.996 .8145 9.910875 4 160 I 40<00 159.985 1.745 0.241852 5 200 2 30<12 23.90.024 5.293 0.723684 7 280 2 50<1 279.802 8.141 0.910682 <tr< th=""><th>100.000</th><th>100 million (100 m</th><th></th><th></th><th></th><th></th></tr<>	100.000	100 million (100 m							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
6 234 2 33 51 233.966 5.160 0.712689 7 273 2 59 30 272.807 7.938 0.899687 8 312 3 250 9 311.638 11.563 1.063055 1.208080 9 351 3 50 48 388.956 21.799 1.338435 10 390 4 16 28 388.956 21.799 1.338435 1 40 0° 25' 00' 40.000 0.0582 8.764756 2 80 0.50 00 19.995 1.745 0.241852 3 120 1 15<00									
7 273 2 59 30 272.807 7.938 0.899687 8 312 3 25 09 311.638 11.563 1.063055 9 351 3 50 48 350.368 16.147 1.208080 10 390 4 16 28 388.956 21.799 1.338435 n. nc. Ds. y. x. Log x. 1 40 0° 25' 00' 40.000 0.0582 8.764756 2 80 0.50.00 79.999 .2909 9.463724 3 120 1 15.00 119.996 .8145 9.910875 4 160 1.40.00 159.985 1.745 0.241852 5 200 2.050.00 239.9024 5.293 0.723684 7 280 2.55.01 279.802 8.141 0.910682 3 320 3 20.01 319.629 11.859 1.074051 9 360 3 45.02 398.929 2.358 1.349430	6								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	the second second								
9 351 3 50 48 350.368 16.147 1.208080 10 390 4 16 28 388.956 21.799 1.338435 $c.$ CHORD-LENGTH = $40.$ $n.$ $nc.$ $D_s.$ $y.$ $x.$ $Log x.$ 1 40 $0^\circ 25' 00'r$ 40.000 0.0582 8.764756 2 80 0.5000 79.999 $.2909$ 9.463724 3 120 1 1500 119.995 1.745 0.241852 4 160 1 4000 159.955 1.745 0.241852 4 160 1 4000 159.955 1.745 0.241852 5 200 2 3001 239.924 5.293 0.723684 7 280 2 55 01 279.802 8.141 0.910651 8 320 3 200 1319.629 11.859 1.210075 10 400 4 10 <03									
1039041628388.95621.7991.338435c. CHORD-LENGTH = 40.n.nc.Ds.y.x.Log x.1400°25'00'40.0000.05828.7647562800.500079.999.29099.4637243120115.00119.996.17450.24185541601.4000159.9851.7450.24185552002.0500199.9593.1990.50506262402.3001239.9645.2930.72368472802.5501279.8028.1410.91068283203.20001319.62911.8591.07405193603.4502359.35216.5611.21907510400410.03398.92922.3581.349430c. CHORD-LENGTH = 41.n.n.nc.Dsy.x.Log x.1410° 24' 24''41.0000.05968.7754802820.484781.999.29829.4744483123113<10122.9968.34822.6215.7204.9583.2790.51576622.522.0157204.9583.2790.5157652.022.0515.4250.73440872.872.5045286.7978.3450.92140683283.1509 </th <th>1 1 1 1 1 1 1 1 1</th> <th></th> <th></th> <th></th> <th></th> <th></th>	1 1 1 1 1 1 1 1 1								
i i i i i	-					1.338435			
n. nc. Ds. y. x. Log x. I 40 0° 25' 00' 40.000 0.0582 8.764756 2 80 0 50 00 79.999 .2909 9.463724 3 120 I 15 00 119.996 .8145 9.910875 4 I60 I.40 00 159.985 1.745 0.221852 5 200 2.05 00 199.959 3.199 0.505062 6 240 2.30 01 239.9024 5.293 0.723684 7 280 2.55 61 279.802 8.141 0.910682 8 320 3 45 02 359.352 16.561 1.219075 10 400 4 10 03 398.929 22.358 1.349430 c. CHORD-LENGTH = 41. n. nc. Ds. .y. x. Log x. . 123 1313 10 122.996	1.4		And the second of the second sec			1.			
I 40 0° 25' 00' 40.000 0.0582 8.764756 2 80 0 50<00 79.999 .2909 9.463724 3 120 I 15<00 119.996 .8145 9.9108724 4 160 I 40<00 159.985 I.745 0.241852 5 200 2 05<00 199.959 3.199 0.505062 6 240 2 30<01 239.904 5.293 0.723684 7 280 2 55<01 279.802 8.141 0.9106851 8 320 3 45<02 359.352 16.561 1.219075 10 400 4 10<03 398.929 22.358 I.349430 4 35<03 .y. x. Log x. n. nr. Ds: .y. x. Log x. 2 82 0 48.47 81.999 .2982 9.474448			c. CHO	RD-LENGT	`H = 40.				
I 40 0° 25' 00' 40.000 0.0582 8.764756 2 80 0 50<00	1997 - 19	-	1		1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.	nc.	<i>Ds</i> .	у.	<i>x</i> .	Log x.			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I	40	0° 25' 00'	40.000	0.0582				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	80	0 50 00	79.999					
5 200 2 05 00 199 959 3.199 0.595062 6 240 2 30 239.964 5.293 0.723684 7 280 2 55 1279.802 8.141 0.910682 8 320 320 01 319.629 11.859 1.074051 9 360 345 02 359.352 16.561 1.219075 10 400 4 10 03 398.929 22.358 1.349430 t nt nt D_{5} $.y$ x $Log x$ t 4 0° 398.929 22.358 1.349430 t nt D_{5} $.y$ x $Log x$ t 10° 3199 $.29282$ 9.474448 3 123 13 103 985 1.789 0.252576 2 82 04847 81.999 $.29282$ 0.515786 0.252576	3								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				159.985					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7		00						
10 400 4 10 03 398.929 22.358 1.349430 c. CHORD-LENGTH = 41. n. nc. Ds. .y. x. Log x. 1 41 0° 24' 24" 41.000 0.0596 8.775480 2 82 0 48 47 81.999 .2982 9.474448 3 123 1 13 10 122.996 .8348 9.921599 4 164 1 37 34 163 985 1.789 0.252576 5 205 20 157 204.958 3.279 0.515786 6 246 2 20 1 245.901 5.425 0.734408 7 287 2 50 45 286.797 8.345 0.921406 8 328 3 15 09 327.620 12.156 1.084775 9 369 3.93 368.336 16.975 1.229799 1.360154 10 4.03 57 408.903 22.917 1.3	1		and the second sec						
4 35 03 c. CHORD-LENGTH = 41. n. nc. Ds. .y. x. Log x. 1 41 0° 24' 24'' 41.000 0.0596 8.775480 2 82 0 48 47 81.999 .2982 9.474448 3 123 I 13 10 122.996 .8348 9.921599 4 164 I 37 34 163 985 1.789 0.252576 5 205 2<01			0 10						
c. CHORD-LENGTH = 41. n. nc. Ds. .y. x. Log x. I 41 0° 24' 24'' 41.000 0.0596 8.775480 2 82 0 48 47 81.999 .2982 9.474448 3 I23 I 310 122.996 .8348 9.921599 4 164 I 37 24 163 985 1.789 0.252576 5 205 2 01<57 204.958 3.27.9 0.515786 6 246 2 26 21 245.901 5.425 0.734408 7 287 2 50 45 286.797 8.345 0.921406 8 328 3 15 09 327.620 12.156 1.084775 9 369 3 39 33 368.336 16.975 1.229799 10 410 4 03 57 408.903 22.917 1.360154	IO	400		398.929	22.358	1.349430			
n. nc. Ds. y. x. Log x. I 41 0° 24' 24'' 41.000 0.0596 8.775480 2 82 0 48 47 81.999 .2982 9.474448 3 I23 I I3 10 I22.996 .8348 9.921599 4 I64 I 37 34 I63 985 I.789 0.252576 5 205 2 01 57 204.958 3.279 0.515786 6 246 2 20 1 245.901 5.425 0.734408 7 287 2 50 45 286.797 8.345 0.921406 8 328 3 15 09 327.620 12.156 1.084779 9 369 3 933 368.336 16.975 1.229799 10 410 4 03 57 408.903 22.917 1.360154			4 35 03	「「「「「「「「」」」	S the state	100 - 144 · 中国			
n. nc. Ds. y. x. Log x. I 41 0° 24' 24'' 41.000 0.0596 8.775480 2 82 0 48 47 81.999 .2982 9.474448 3 I23 I I3 10 I22.996 .8348 9.921599 4 I64 I 37 34 I63 985 I.789 0.252576 5 205 2 01 57 204.958 3.279 0.515786 6 246 2 20 1 245.901 5.425 0.734408 7 287 2 50 45 286.797 8.345 0.921406 8 328 3 15 09 327.620 12.156 1.084779 9 369 3 933 368.336 16.975 1.229799 10 410 4 03 57 408.903 22.917 1.360154			c. CHOI	RD-LENGT	H = 41.				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Contraction of the second	Siles -	1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n.	nc.	Ds.	. <i>y</i> .	x.	Log x.			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I	41	0° 24' 24''		0.0596	8.775480			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	82	0 48 47	81.999		9.474448			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3		I 13 10			9.921599			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		164	51 51		1.789				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5								
9 369 3 39 33 368.336 16.975 1.229799 10 410 4 03 57 408.903 22.917 1.360154									
9 369 3 39 33 368.336 16.975 1.229799 10 410 4 03 57 408.903 22.917 1.360154	7								
IO 4IO 4 03 57 408.903 22.917 I.360154	100 - 22 March	0							
4 20 21	IO	410		408.903	22.917	1.300154			
		1000	4 20 21						

	c. CHORD-LENGTH = 42 .							
12.	nc.	Ds.	у.	x.	Log x.			
I 2	42 84 126	0° 23' 49" 0 47 37 1 11 26	42.000 \$3.999 125.996	0.0611 •3054 •8552	8.785945 9.484913			
3 4 5 6	120 168 210	I 11 20 I 35 I4 I 59 02	167.984 209.957	1.832 3.359	9.932065 0.263042 0.526251			
6 7 8	252 294 336	2 22 52 2 46 41 3. 10 30	251.899 293.792 335.611	5.557 8.548 12.452	0.744874 0.931871 1.095240			
9 10	378 420	3 34 19 3 58 0S	377.319 418.876	17.389 23.476	1.240265 1.370619			
		с. СНО	RD-LENGI	`H = 43.				
п.	nc.	Ds.	<i>y</i> .	x.	Log x.			
I 2	43 86	0° 23' 15'' 0 46 31	43.000 85.999	0.0625	8.796164 9.495133			
34	129 172	I 09 46 I 33 02	128.996 171.984	.8755 1.876	9.9493133 9.942284 0.273261			
567	215 258 301	1 56 17 2 19 33 2 42 48	214.955 257.897 300.787	3.439 5.690 8.752	0.536470 0.755093 0.942090			
7 8 9	344 387	3 06 04 3 29 20	343.601 386.303	12.749 17.803	1.105459 1.250484			
10	430	3 52 35 4 15 50	428.849	24.035	1.380839			
		c. CHOI	RD-LENGT	$\mathrm{H}=44.$	A STATE			
п.	nc.	Ds-	<i>J'</i> .	<i>x</i>	Log x.			
I 2	44 88	0° 22' 44'' 0 45 27	44.000 87.999	0.0640 .3200	8.806149 9.505117			
3 4	132 176	1 08 11 1 30 55	131.995 175.984	.8959 1.920	9.952268 0.283245			
567	220 264 308	I 53 38 2 I6 22 2 39 06	219.954 263.894 207.78	3.519 5.822 8.055	0.546454 0.765077			
7 8 9	308 352 396	3 01 50 3 24 34	307.78 351.592 395.287	8.955 13.045 18.217	0.952075 1.115444 1.260468			
	1000	3 47 18		1				

ϵ . CHORD-LENGTH = 45.								
nc.	Ds.	у.	x.	Log x.				
45 90 135 180 225 270 315 360 405	$\begin{array}{c} 0^{\circ} \ 22' \ 13'' \\ 0 \ 44 \ 27 \\ 1 \ 06 \ 40 \\ 1 \ 28 \ 53 \\ 1 \ 51 \ 07 \\ 2 \ 13 \ 20 \\ 2 \ 35 \ 34 \\ 2 \ 57 \ 48 \\ 3 \ 20 \ 01 \\ 3 \ 42 \ 15 \end{array}$	45.000 89.999 134.995 179.983 224.953 269.892 314.778 359.583 404.271	0.0655 -3272 .0163 -1.963 3.599 5.954 9.159 13.341 18.631	8.815908 9.514877 9.962028 0.293005 0.556214 0.774837 0.961834 1.125203 1.270228				
	c. CHO	RD-LENGT	CH = 46.					
nc.	Ds.	y. x.		Log x.				
46 92 138 184 230 276 322 368 414	$\begin{array}{c} 0^{\circ} 21' 44''\\ 0 43 29\\ 1 05' 13\\ 1 26 58\\ 1 48 42\\ 2 10 26\\ 2 32 11\\ 2 53 56\\ 3 15 40\\ 3 37 24 \end{array}$	46.000 91.999 137.995 183.983 229.952 275.889 321.773 367.573 413.255	0.0669 .3345 .9366 2.007 3.679 6.087 9.362 13.638 19.045	8.825454 9.524422 9.971573 0.302550 0.565759 0.784382 0.971380 1.134749 1.279773				
	с. СНО	RD-LENGT	TH = 47.					
nc.	Ds. ·	<i>y</i> .	x.	Log x.				
47 94 141 188 235 282 329 376 423	$\begin{array}{c} 0^{\circ} 21' 16'' \\ 0 42 33 \\ 1 03 50 \\ 1 25 06 \\ 1 46 23 \\ 2 07 40 \\ 2 28 57 \\ 2 50 14 \\ 3 11 31 \\ 3 12 18 \end{array}$	47.000 93.999 140.995 187.982 234.951 281.887 • 28.768 375.564 422.238	0.0684 .3418 .9570 2.051 3.759 6.219 9.566 13.934 59.459	8.834794 9.533762 9.980913 0.311890 0.575100 0.793722 0.980720 1.144089 1.289113				
	45 90 135 180 225 270 315 360 405 405 405 405 405 405 405 405 405 40	nc. D_s . 45 0° 22' 13" 90 0 44 27 135 1 06 40 180 I 28 53 225 I 51 07 270 2 13 20 315 2 35 34 360 2 57 43 405 3 20 01 3 42 15 c . CHIOI nc. D_s . 46 0° 21' 44" 92 0 43 29 138 1 05 13 184 1 26 58 230 I 48 42 276 2 10 26 322 2 32 11 368 2 53 56 414 3 15 40 3 37 24 c . CHOI nc. D_s . 47 0° 21' 16" 94 0 42 33 141 1 03 50 188 1 25 06 235 I 46 23 20 2 8 57 376 2 50 14	nc. D_s . y. 45 0° 22' 13" 45.000 90 0.44 27 89.999 135 I.06 134.995 180 I.28 53 170.983 225 I.51 07 224.953 270 2.13 20 269.892 315 2.35 34 314.778 360 2.57 48 359.583 405 3.2001 404.271 3.42 15 . . <i>L</i> . CHIORD-LENGT nc. D_s . y. 46 0° 21' 44" 46.000 92 0.43 29 91.999 138 1.05' 13 137.995 184 1.26 58 183.983 236 2.35 56 367.573 314 3.15 40 413.255 3.37 24 . C. CHORD-LENGT nc. D_s . y. 47 0° 21' 16" 47.000 94 0.42 33 93.999 141	nc. Dz. y. x. 45 0° 22' 13" 45.000 0.0655 90 0.44 27 89.999 .3272 135 1.06 40 134.995 .9163 180 1.28 53 179.983 1.963 225 1.51 07 224.953 3.599 270 2.13 20 269.892 5.954 315 2.35 34 314.778 9.159 300 2.57 48 359.583 13.341 405 3.20 01 404.271 18.631 405 3.20 01 404.271 18.631 405 3.42 15				

	TABLE III.										
	c. CHORD-LENGTH = 48.										
n.	nc.	Ds.	y.	x.	Log x.						
I 2 3 4 5 6 7 8	48 96 144 192 240 288 336 384	$\begin{array}{c} 0^{\circ} \ 20^{\prime} \ 50^{\prime\prime} \\ 0 \ 41 \ 40 \\ 1 \ 02 \ 30 \\ 1 \ 23 \ 20 \\ 1 \ 23 \ 20 \\ 1 \ 44 \ 10 \\ 2 \ 05 \ 00 \\ 2 \ 25 \ 51 \\ 2 \ 46 \ 41 \\ 3 \ 06 \ 31 \end{array}$	48.000 95.999 143.995 191.982 239.950 287.885 335.763 383.555	0.0698 -3491 -9774 2.094 3.839 6.351 9.769 14.231	8.843937 9.542905 9.990057 0.321034 0.584243 0.802866 0.989863 1.153232						
1		c. CHOI	RD-LENGT	Ή = 49 .							
12.	nc.	Ds.	y.	x.	Log x.						
I 2 3 4 5 6 7 8	49 98 147 196 245 294 343 392	$\begin{array}{c} 0^{\circ} \ 20' \ 25'' \\ 0 \ 40 \ 49 \\ 1 \ 01 \ 14 \\ 1 \ 21 \ 38 \\ 1 \ 42 \ 03 \\ 2 \ 02 \ 27 \\ 2 \ 22 \ 52 \\ 2 \ 43 \ 17 \\ 3 \ 03 \ 31 \end{array}$	49.000 97.999 146.995 195.982 244.949 293.882 342.758 391.546	0.0713 .3563 .9977 2.138 3.919 6.484 9.973 14.527	8.852892 9.551860 9.999011 0.329988 0.593198 0.811820 0.998818 1.162187						
and a second											

c. CHORD-LENGTH = 50.

72.	nc.	Ds.	у.	· <i>x</i> .	Log x.
I 2 3 4 5 6 7 8	50 100 150 200 250 300 350 400	$\begin{array}{c} 0^{\circ} 20^{\circ} 00^{\prime\prime} \\ 0 \ 40 \ 00 \\ 1 \ 00 \ 00 \\ 1 \ 20 \ 00 \\ 1 \ 40 \ 00 \\ 2 \ 00 \ 00 \\ 2 \ 20 \ 00 \\ 2 \ 40 \ 00 \\ 3 \ 00 \ 00 \end{array}$	50.000 99.999 149.995 199.981 249.948 299.880 349.753 399.536	0.0727 .3636 1.018 2.182 3.999 6.616 10.176 14.824	8.861666 9.56034 0.007785 0.338762 0.601972 0.820594 1.007592 1.170961

TABLE IV.

FUNCTIONS OF THE ANGLE s.

п.		s.	cos s.	log vers s.	$R 1^{\circ} \times $ vers s.	sin s.	log sin s.		s.
I	0	10	.00000	4.626422	.024	.00201	7.463726	0	' I0'
2	0			5.580662				0	
3	I	00		6.182714		.01745		I	00
4	I	40		6.626392			8.463665	I	40
5	2	30		6.978536			8.639680	2	30
1	-						a second		
6	3	30	.99813	7.720726	10.687	.06105	8.785675	3	30
7	4	40	.99668	7.520498	18.994	.08136	8.910404	4	40
8	6	00	.99452	7.738630	31 388	. 10453	9.019235	6	00
9	7	30	.99144	7.932227	49.018	.13053	9.115698	7	30
IO	9	10	.98723	8.106221	73.173	.15931	9.202234	9	IO
100			E ANSI		S STATE A			1	
II	II	00		8.264176	105.270		9.280599	II	00
12	13	00		8 408748	146.857	.22495	9.352088	13	00
13	15	IO		8.541968	199.570	. 26163	9.417684	15	IO
14	17	30		8.665422	265.186	.30071	9.478142	17	30
15	20	00	.93969	8.780370	345.540	. 34202	9.534052	20	00
		1.12	-		1. S. S. S.			1	
16	22	40		8.887829		. 38537	9.585877	22	40
17	25	30		8.988625	558.153	.43051	9.633984	25	30
18	28	30		9.083441	694.335	.47716	9.678663	28	30
19	31	40		9.172846	853.050	.52498	9.720140	31	40
20	35	00	.81915	9.257314	1030.20	.57358	9.758591	35	00
			8 4 4 A A			1.5			

TABLE

SEL	ECTED S	SPIRALS I	FOR A 2° CI	URVE, G	IVING
	5.	n × c.	$D_{\delta(n+1)}$.	<i>D</i> '.	d.
10° 10 10 10 10 20 20 20 20 20	1° 00' 1 40 2 30 3 30 4 40 1 00 1 40 2 30 3 30	$3 \times 32 4 \times 39 5 \times 43 6 \times 45 7 \times 44 3 \times 33 4 \times 41 5 \times 48 6 \times 50 $	2° 05' 00'' 2 08 13 2 19 33 2 35 34 3 01 50 2 01 13 2 01 57 2 05 00 2 20 00	2° 03' 2 09 2 18 2 33 2 40 2 01 2 02 2 05 2 06	41.12 61.04 73.69 78.81 70.47 45.28 73.85 99.99 109.52
30 30 30 30 30 30 40 40 40	I 00 I 40 2 30 3 30 3 30 I 00 I 40 2 30	$3 \times 34 4 \times 41 5 \times 49 6 \times 50 6 \times 50 3 \times 35 4 \times 42 5 \times 50 3$	I 57 39 2 0I 57 2 02 27 2 20 00 2 20 00 I 54 I7 I 59 02 2 00 00	2 01 2 01 2 02 2 02 2 03 2 01 2 01 2 01 2 01	46.14 75.16 109.78 115.63 110.90 46.90 76.96 117.87

EQUAL LENGTHS BY CHORD MEASUREMENT.							
¹ / ₂ old line.	1/2 new line.	Diff.	<i>x</i> .	h.	k.		
291.12	291.12	.00	.6516	.040	.061		
311.04	311.04	.00	1.702	.187	.110		
323.69	323.70	+.01	3.439	•354	.103		
328.81	328.82	10. +	5.954	.590	.099		
320.47	320.50	+ .03	8.955	.897	.100		
545.28	545.28	.00	.6719	.122	.182		
573.85	573.84	0I	1.789	.118	.066		
599.99	600.00	+ .01	3.839	.527	.137		
609.52	609.52	.00	6.616	•554	.084		
796.14	796.22	+ .08	.6923	.566	.082		
825.16	825.16	.00	1.789	.227	.127		
859.78	859.75	03	3.919	.377	.006		
865.63	865.57	06	6.616	.249	.038		
860.90	860.98	+ .08	6.616	1.013	.153		
1046.90	1047.15	+ .25	.7127	1.222	1.715		
1076.96	1077.09	+ .13	1.832	.818	.463		
1117.87	1117.77	10	3.999	.141	.035		

v.

TABLE

SELECTED SPIRALS FOR A 4° CURVE, GIVING							
Δ	5.	n × c.	$D_{s(n+1)}$.	<i>D</i> ′.	d.		
IO° IO	1° 00' I 40	3 × 16 4 × 19	4° 10' 03'' 4 23 13	4° 07' 4 16	20.22 29.12		
10 10	2 30 3 30	5 × 22 6 × 23	4 32 48 5 04 26	4 39 5 17	38.75 41.37		
20 20 20 20 20	I 40 2 30 3 30 4 40 6 00	$\begin{array}{c} 4 \ \times \ 20 \\ 5 \ \times \ 24 \\ 6 \ \times \ 27 \\ 7 \ \times \ 30 \\ 8 \ \times \ 31 \end{array}$	4 10 03 4 10 03 4 19 19 4 26 44 4 50 24	4 04 4 09 4 17 4 31 4 6	34.92 50.72 63.69 78.07 81.88 85.40		
20 30 30 30 30 30 30 30 30	7 30 1 40 2 30 3 30 4 40 6 00 7 30 9 10	$9 \times 32 4 \times 20 5 \times 25 6 \times 28 7 \times 32 8 \times 35 9 \times 37 10 \times 38$	5 12 36 4 10 03 4 00 03 4 10 03 4 10 03 4 10 03 4 17 12 4 30 20 4 49 33	5 16 4 02 4 04 4 07 4 14 4 23 4 34 4 47	35.57 57.39 72.37 93.09 110.31 122.20 126.86		
40 40 40 40 40 40	2 30 3 30 4 40 6 00 7 30 9 10	$5 \times 25 6 \times 28 7 \times 32 8 \times 36 9 \times 39 10 \times 41$	4 00 03 4 10 03 4 10 03 4 10 03 4 10 03 4 16 28 4 28 21	4 02 4 04 4 08 4 12 4 17 4 26	58.91 73.75 94.65 121.38 142.86 154.34		
60 60 60 60 60	2 30 3 30 4 40 6 00 7 30	5×25 6×29 7×32 8×36 9×40	4 00 03 4 0I 26 4 I0 03 4 I0 03 4 I0 03	4 0J 4 02 4 03 4 05 4 08	59.68 81.04 99.59 125.81 154.42		
80 80 80 80 80	2 30 3 30 4 40 6 00 7 30	5×25 6×29 7×33 8×37 9×41	4 00 03 4 0I 26 4 02 28 4 03 I7 4 03 57	4 01 4 01 4 02 4 03 4 05	58.29 82.82 106.99 135.61 164.79		

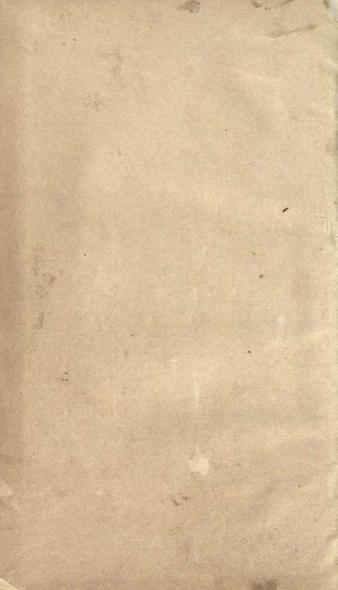
V. ,	V. REESE LIBRARY							
		(U	NIVI	ERSI	TY			
EQUAL	EQUAL LENGTHS BY CHORD MEASUREMENT.							
	1							
$\frac{1}{2}$ old line.	$\frac{1}{2}$ new line.	Diff.	x.	h.	k.			
	10 10 10 10 10 10 10 10 10 10 10 10 10 1							
145.22	145.17	05	.3258	.045	.135			
154.12	154.13	+ .0I	:8290	.080	.100			
163.75	163.76	+ .01	1.760	.177	001.			
166.37	166.39	+ .02	3.043	.305	.100			
284.92	284.92	.00	.8726	.081	.100			
300.72	300.72	.00	1.920	.184	.006			
313.69	313.75	+ .06	3.573	.375	.105 -			
328.07	328.08	+ .01	6.106	.598	.098			
332.88	331.92	+ .01	9.191	.910	.092			
335.40	335.47	+ .07	13.248	1.310	.099			
410.57	410.57	.00	.8726	.137	.157			
432.39	432.38	01	2.000	.147	.074			
447.37	447.35	02	3.705	.284	.077 -			
468.09	468.09	.00	6.513	.687	.105			
485.31	485.32	10. +	10.377	1.091	.105			
497.20	497.23	+ .03	15.319	1.526	.100			
501.86	501.95	+ .09	21.240	2.126	.100			
558.91	558.88	03	2.000	.100	.054			
573.75	573.74	0I	3.705	.361	.097			
594.65	594.66	+ .01	6.513	.977	.150			
621.38	621.33	05	10.673	.973	.00I			
642.86	642.83	03	16.147	I.100	.086			
654.34	654.36	+ .02	22.917	2.186	.095			
809.68	809.67	0I	2.000	.180	.000			
831.04	831.03	01	3.837	.461	.120			
849.59	849.52	07	6.513	.572	.088			
875.81	875.76	05	10.673	1.074	.106			
904.42	904.36	06	16 561	1.718	.104			
1018 00	1058 61	1 00	0.000		100			
1058.29 1082.82	1058.61 1082.71	+.32 11	2.000 3.837	.979	.490			
1082.82	1002.71	+ .04	6.716	.295 1,000	.074			
1135.61	1135.51	IO	10.970	1.100	.149			
1164.79	1164.92	+ .13	16.975	2.440	.144			
			1.515	25 The second				

TABLE

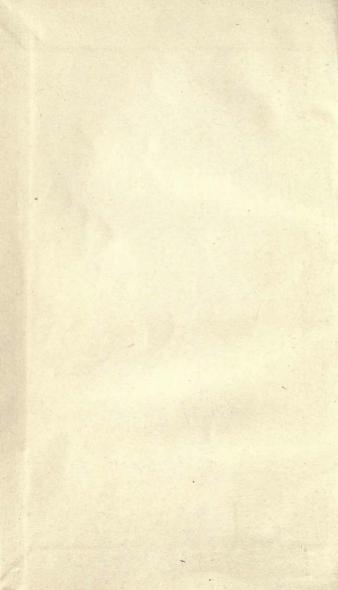
SELEC	SELECTED SPIRALS FOR AN 8° CURVE, GIVING							
- Δ	5.	n×c.	$D_{8(n+1)}$.	<i>D</i> ′.	d.			
10°	2° 30'	5 × 11	9° 06' 01''	9° 06′	19.95			
20 20 20 20	2 30 3 30 4 40 6 00	5×12 6×14 7×15 8×16	8 20 26 8 20 26 8 53 51 9 23 07	8 16 8 34 8 54 9 24	25.71 34.86 39.90 45.52			
30 30 30 30 30 30 30	2 30 3 30 4 40 6 00 7 30 9 10	$5 \times 12 6 \times 14 7 \times 16 8 \times 17 9 \times 18 10 \times 19$	8 20 26 8 20 26 8 20 26 8 49 55 9 16 08 9 39 36	8 07 8 14 8 26 8 36 8 46 9 14	26.50 36.16 47.01 53.13 60.05 65.70			
40 40 40 40 40 40 40 40	2 30 3 30 4 40 6 00 7 30 9 10 11 00 13 00	$5 \times 12 6 \times 14 7 \times 16 8 \times 18 9 \times 19 10 \times 20 11 \times 21 12 \times 22$	8 20 26 8 20 26 8 20 26 8 20 26 8 46 49 9 10 34 9 32 03 9 51 36	8 04 8 08 8 14 8 22 8 30 8 40 8 54 9 14	26.93 36.85 48.25 61.35 68.07 75.01 82.13 89.81			
60 60 60 60 60 60 60 60 60 60	2 30 3 30 4 40 6 00 7 30 9 10 11 00 13 00 15 10 17 30	$5 \times 12 6 \times 14 7 \times 16 8 \times 18 9 \times 20 10 \times 22 11 \times 23 12 \times 25 13 \times 26 14 \times 27 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 02 8 03 8 06 8 10 8 16 8 24 8 31 8 48 9 02 9 22	27.30 38.22 49.75 62.87 77.16 93.05 101.08 118.19 127.21 136.45			
80 80 80 80 80 80 80 80	4 40 6 00 7 30 9 10 11 00 13 00 15 10 17 30	$\begin{array}{c} 7 \times 17 \\ 8 \times 19 \\ 9 \times 20 \\ 10 \times 22 \\ 11 \times 24 \\ 12 \times 26 \\ 13 \times 27 \\ 14 \times 28 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 04 8 06 8 08½ 8 13 8 19 8 28 8 34 8 42	57.04 71.78 79.18 95.23 112.67 130.86 140.88 150.55			

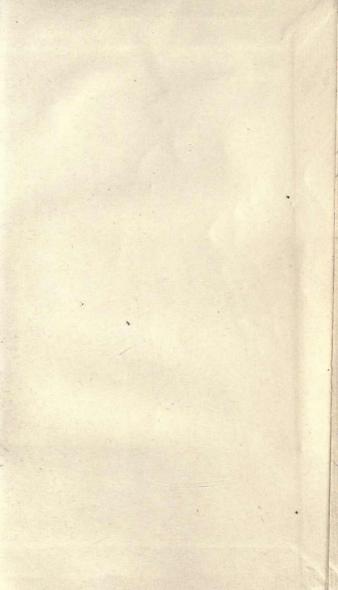
82

v.

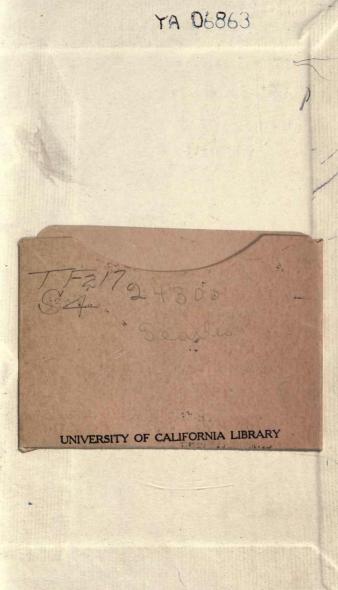

EQUAL LENGTHS BY CHORD MEASUREMENT.							
$\frac{1}{2}$ old line.	¹ / ₂ new line.	Diff.	x.	h.	k.		
82.45	82.47	+ .02	.8798	.051	.058		
150.71 159.86 164.90 170.52	150.72 159.88 164.92 170.55	+ .01 + .02 + .02 + .03	.9598 1.852 3.053 4.744	.051 .117 .185 .221	.053 .063 .061		
214.00 223.66 234.51	214.00 223.68 234.53	.co + .02 + .02	4.744 .9598 1.852 3.256	.049 .142 .260	.047 .051 .077 .080		
240.63	240.65	+ .02	5.040	•325	.065		
247.55	247.55	.00	7.452	•287 -	.039		
253.20	253.18	02	10.620	•590	.056		
276.93	276.94	+ .01	.9598	.079	.082		
286.85	286.87	+ .02	1.852	.181	.098		
298.25	298.24	01	3.256	.293	.090		
311.35	311.33	02	5.337	.330	.062		
318.07	318.06	10	7.866	.472 -	.060		
325.01	325.00	10	11.179	.629	.056		
332.13	332.12	10	15.415	.840	.054		
339.81	339.81	00.	20.723	I.024	.049		
402.30	402.32	+ .02	.9598	.136	.142		
413.22	413.19	03	1.852	.083	.045		
424.75	424.76	+ .01	3.256	.317	.097		
437.87	437.88	+ .01	5.337	.539	.101		
452.16	452.18	+ .02	8.280	.863-	.104		
468.05	468.02	03	12.297	1.139	.093		
476.08	476.09	+ .01	16.883	1.523	.090		
493.19	493.18	10. –	23.548	2.160	.092		
502.21	502.21	00.	30.817	2.613	.085		
511.45	511.45	00.	39.595	3.157	.080		
557.04	557.02	02	3.460	.366	.106		
571.78	571.75	03	5.633	.408	.072		
579.18	579.18	.00	8.280	.860	.104		
595.23	595.25	+.02	12.297	1.346	.110		
612.67	612.70	+ .03	17.617	1.719 ·	.109		
630.86	630.90	+ .04	.24.490	2.738	.112		
640.88	640.88	.00	32.002	3.119	.098		
650.55	650.62	+ .07	41.062	3.809	.093		
			6.4				


TABLE


5	SELECTED SPIRALS FOR A 16° CURVE,								
Δ	\$.	n X c.	$D_{8(n+1)}$.	D'.	d.				
30°	4° 40'	7 × 10	13° 21′ 48″	18° 00'	33.59				
40	6 00	8 × 10	15 02 34	17 14	36.14				
60 60 60	7 30 9 10	9 × 10 10 × 11 11 × 12	16 43 31 16 43 31 16 43 31	16 32 16 48 17 14	38.47 46.40 54.62				
60 60	13 00 15 10	11×12 12×12 13×13	18 07 48 18 01 18	17 22 18 10	54.14 62.88				
60 60	17 30 20 00	14 × 13 15 × 14	19 19 14 19 06 05	18 12 20 00	62.85 72.14				
80 80	7 30	9 × 10 10 × 11	16 43 31 16 43 31	16 16 16 26	39.74 47.49				
80 80	II 00 I3 00	11×12 12×13	16 43 31 16 43 30	16 38 16 56	56.19 65.24				
80 80	15 IO 17 30	$\begin{array}{c} 13 \times 14 \\ 14 \times 14 \end{array}$	16 43 29 17 55 44	17 22 17 24	74.72 75.02				
80 80 80	20 00 22 40 28 30	15×15 16 × 15 18 × 16	17 50 54 18 58 25 19 53 20	18 06 18 08 19 42	85.15 85.18 95.84				
00	28 30	10 × 10	19 53 20	19 42	93.04				


GIVING EQUAL LENGTHS OF ACTUAL ARCS.					
1/2 old line.	1 new line.	Diff.	<i>x</i> .	h.	k.
127.64	127.64	.00	2.035	.388	.191
161.55	161.55	.00	2.965	.430	.145
226.58 234.50 242.73 242.25 250.90 250.96 260.25 290.55 298.30 307.01 316.66 325.53 325.83	$\begin{array}{c} 226.56\\ 234.45\\ 246.67\\ 242.26\\ 250.99\\ 250.97\\ 260.25\\ \hline \\ 290.47\\ 298.27\\ 306.96\\ 316.03\\ 325.54\\ 325.81\\ \end{array}$	$\begin{array}{c} - & .02 \\ - & .05 \\ - & .06 \\ + & .01 \\ & .00 \\ + & .01 \\ & .00 \\ + & .01 \\ & .00 \\ - & .08 \\ - & .03 \\ - & .05 \\ - & .03 \\ + & .01 \\ - & .02 \end{array}$	4.140 6.148 8.808 11.303 15.409 19.064 25.031 4.140 6.148 8.808 12.245 16.594 20.531	.436 .576 .860 1.093 1.516 1.552 2.182 .328 .680 .943 1.384 1.973 1.939	.105 .094 .099 .097 .098 .081 .087 .305 .111 .107 .113 .119 .094
335.97 336.00 346.65	335.96 335.99 346.66	10. — 10. — 10. +	26.819 32.276 43.221	2.657 2.677 3.748	.099 .083 .078

v.



THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS will be assessed for failure to return this book on the date due. The penalty will increase to 50 cents on the fourth day and to \$1.00 on the seventh day overdue.

NOV 13 1935 SFP 9 1943 DEC 9 1935 LIBRARY USE APR 14 1952 OCT 23 1938 14Apr52LU NOV 5 1938 30ApiE2PF ŧ NOV 13 1939 18Apr 5 21.U NOV 2 1940 M 101941M NUV OCT 6 1942 JUL 27 1943

